|
|
A345370
|
|
a(n) is the number of distinct numbers of diagonal transversals that a diagonal Latin square of order n can have.
|
|
7
|
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
a(10) >= 736, a(11) >= 1242, a(12) >= 17693, a(13) >= 14017, a(14) >= 281067, a(15) >= 1958394, a(16) >= 13715. - Eduard I. Vatutin, Oct 29 2021, updated May 14 2023
|
|
LINKS
|
Eduard I. Vatutin, Proving lists (1, 4, 5, 6, 7, 8, 9, 10, 11, 12).
E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, I. I. Kurochkin, A. M. Albertyan, A. V. Kripachev, A. I. Pykhtin, Methods for getting spectra of fast computable numerical characteristics of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 19-23. (in Russian)
E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, I. I. Kurochkin, Heuristic method for getting approximations of spectra of numerical characteristics for diagonal Latin squares, Intellectual information systems: trends, problems, prospects, Kursk, 2022. pp. 35-41. (in Russian)
|
|
EXAMPLE
|
For n=7 the number of diagonal transversals that a diagonal Latin square of order 7 may have is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, or 27. Since there are 14 distinct values, a(7)=14.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more,hard
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|