login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345372
a(n) = Sum_{i=1..n} nac(i,n) where nac(i,n) is the n-th i-bonacci number. The n-th i-bonacci number here is equal to 1 for the first i terms, with subsequent terms equaling the sum of the previous n terms.
0
1, 2, 4, 8, 16, 31, 60, 114, 217, 411, 780, 1481, 2820, 5379, 10288, 19720, 37884, 72924, 140640, 271695, 525698, 1018611, 1976276, 3838889, 7465191, 14531683, 28313776, 55214993, 107762464, 210477611, 411387724, 804609206, 1574671586, 3083549861, 6041628460
OFFSET
1,2
COMMENTS
a(n) is the sum of the first n elements of the n-th column of the following array:
1, 1, 1, 1, 1, ... (1-bonacci numbers)
1, 1, 2, 3, 5, ... (2-bonacci or Fibonacci numbers)
1, 1, 1, 3, 5, ... (3-bonacci or tribonacci numbers)
1, 1, 1, 1, 4, ... (4-bonacci or tetranacci numbers)
...
For n >= 3, this sequence is 2 + antidiagonal sums of A061451.
FORMULA
a(n) = Sum_{i=1..n} nac(i,n) where nac(i,n) = 1 if 1 <= n <= i, Sum_{k=1..i} nac(i,n-k) if n > i.
MAPLE
b:= proc(i, n) option remember; `if`(n=0, 0,
`if`(n<=i, 1, add(b(i, n-j), j=1..i)))
end:
a:= n-> add(b(i, n), i=1..n):
seq(a(n), n=1..36); # Alois P. Heinz, Jun 16 2021
MATHEMATICA
b[i_, n_] := b[i, n] = If[n==0, 0,
If[n<=i, 1, Sum[b[i, n-j], {j, 1, i}]]];
a[n_] := Sum[b[i, n], {i, 1, n}];
Table[a[n], {n, 1, 36}] (* Jean-François Alcover, May 29 2022, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Christoph B. Kassir, Jun 16 2021
STATUS
approved