login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355466
Expansion of Sum_{k>=0} (k^k * x)^k/(1 - k^k * x)^(k+1).
2
1, 2, 19, 19879, 4297094601, 298028721578591321, 10314430386430205371442173873, 256923580889667562995278943476559835493321, 6277101737079381674883855772624745947410338680458857322625
OFFSET
0,2
FORMULA
E.g.f.: Sum_{k>=0} exp(k^k * x) * (k^k * x)^k/k!.
a(n) = Sum_{k=0..n} k^(k*n) * binomial(n,k).
PROG
(PARI) my(N=10, x='x+O('x^N)); Vec(sum(k=0, N, (k^k*x)^k/(1-k^k*x)^(k+1)))
(PARI) my(N=10, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, exp(k^k*x)*(k^k*x)^k/k!)))
(PARI) a(n) = sum(k=0, n, k^(k*n)*binomial(n, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 03 2022
STATUS
approved