login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365644
Array read by ascending antidiagonals: A(n, k) = k*(10^n - 1)/9 with k >= 0.
2
0, 0, 0, 0, 1, 0, 0, 11, 2, 0, 0, 111, 22, 3, 0, 0, 1111, 222, 33, 4, 0, 0, 11111, 2222, 333, 44, 5, 0, 0, 111111, 22222, 3333, 444, 55, 6, 0, 0, 1111111, 222222, 33333, 4444, 555, 66, 7, 0, 0, 11111111, 2222222, 333333, 44444, 5555, 666, 77, 8, 0
OFFSET
0,8
FORMULA
O.g.f.: x*y/((1 - x)*(1 - 10*x)*(1 - y)^2).
E.g.f.: y*exp(x+y)*(exp(9*x) - 1)/9.
A(n, 11) = A132583(n-1) for n > 0.
A(n, 12) = A073551(n+1) for n > 0.
EXAMPLE
The array begins:
0, 0, 0, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, ...
0, 11, 22, 33, 44, 55, ...
0, 111, 222, 333, 444, 555, ...
0, 1111, 2222, 3333, 4444, 5555, ...
0, 11111, 22222, 33333, 44444, 55555, ...
...
MATHEMATICA
A[n_, k_]:=k(10^n-1)/9; Table[A[n-k, k], {n, 0, 9}, {k, 0, n}]//Flatten
CROSSREFS
Cf. A000004 (n=0 or k=0), A001477 (n=1), A002275 (k=1), A002276 (k=2), A002277 (k=3), A002278 (k=4), A002279 (k=5), A002280 (k=6), A002281 (k=7), A002282 (k=8), A002283 (k=9), A008593 (n=2), A053422 (main diagonal), A105279 (k=10), A132583, A177769 (n=3), A365645 (antidiagonal sums), A365646.
Sequence in context: A204848 A027645 A193925 * A010190 A323454 A261353
KEYWORD
nonn,base,easy,tabl
AUTHOR
Stefano Spezia, Sep 14 2023
STATUS
approved