login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363498
a(n) = Sum_{k=0..n} floor(sqrt(k))^4.
4
0, 1, 2, 3, 19, 35, 51, 67, 83, 164, 245, 326, 407, 488, 569, 650, 906, 1162, 1418, 1674, 1930, 2186, 2442, 2698, 2954, 3579, 4204, 4829, 5454, 6079, 6704, 7329, 7954, 8579, 9204, 9829, 11125, 12421, 13717, 15013, 16309, 17605, 18901, 20197, 21493, 22789
OFFSET
0,3
COMMENTS
Partial sums of the fourth powers of the terms of A000196.
LINKS
FORMULA
a(n) = (n+1)*m^4 - (1/30)*m*(m+1)*(20*m^4+4*m^3-14*m^2+4*m+1), where m = floor(sqrt(n)).
MATHEMATICA
Table[(n + 1) #^4 - (1/30) # (# + 1)*(20 #^4 + 4 #^3 - 14 #^2 + 4 # + 1) &[Floor@ Sqrt[n]], {n, 0, 45}] (* Michael De Vlieger, Jun 10 2023 *)
PROG
(Python)
from math import isqrt
def A363498(n):
return (m:=isqrt(n))**4 *(n+1) - (m*(m+1)*(20*m**4+4*m**3-14*m**2+4*m+1))//30
print([A363498(n) for n in range(0, 46)]) # Karl-Heinz Hofmann, Jul 15 2023
CROSSREFS
Sums of powers of A000196: A022554 (1st), A174060 (2nd), A363497 (3rd), this sequence (4th), A363499 (5th).
Sequence in context: A213896 A088790 A283186 * A377284 A215304 A215281
KEYWORD
nonn,easy
AUTHOR
Hans J. H. Tuenter, Jun 05 2023
STATUS
approved