Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Jul 20 2023 20:17:09
%S 0,1,2,3,19,35,51,67,83,164,245,326,407,488,569,650,906,1162,1418,
%T 1674,1930,2186,2442,2698,2954,3579,4204,4829,5454,6079,6704,7329,
%U 7954,8579,9204,9829,11125,12421,13717,15013,16309,17605,18901,20197,21493,22789
%N a(n) = Sum_{k=0..n} floor(sqrt(k))^4.
%C Partial sums of the fourth powers of the terms of A000196.
%H Karl-Heinz Hofmann, <a href="/A363498/b363498.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) = (n+1)*m^4 - (1/30)*m*(m+1)*(20*m^4+4*m^3-14*m^2+4*m+1), where m = floor(sqrt(n)).
%t Table[(n + 1) #^4 - (1/30) # (# + 1)*(20 #^4 + 4 #^3 - 14 #^2 + 4 # + 1) &[Floor@ Sqrt[n]], {n, 0, 45}] (* _Michael De Vlieger_, Jun 10 2023 *)
%o (Python)
%o from math import isqrt
%o def A363498(n):
%o return (m:=isqrt(n))**4 *(n+1) - (m*(m+1)*(20*m**4+4*m**3-14*m**2+4*m+1))//30
%o print([A363498(n) for n in range(0,46)]) # _Karl-Heinz Hofmann_, Jul 15 2023
%Y Sums of powers of A000196: A022554 (1st), A174060 (2nd), A363497 (3rd), this sequence (4th), A363499 (5th).
%K nonn,easy
%O 0,3
%A _Hans J. H. Tuenter_, Jun 05 2023