OFFSET
0,3
LINKS
Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
FORMULA
For n>=1, a(n) = Sum_{k=0..n-1} Sum_{i=0..k} binomial(n - 1, i)*(k + 1)*binomial(2*n - 2 - k, n - 1 - k)/n.
D-finite with recurrence (n+1)*a(n) +3*(-4*n+1)*a(n-1) +(34*n-45)*a(n-2) +3*(4*n-17)*a(n-3) +3*(-n+4)*a(n-4)=0. - R. J. Mathar, Jan 11 2024
EXAMPLE
For n=3 the a(3)=12 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{2},{1}.
MAPLE
A362597 := proc(n)
if n = 0 then
1;
else
add(add(binomial(n - 1, i)*(k + 1)*binomial(2*n - 2 - k, n - 1 - k)/n, i=0..k), k=0..n-1) ;
end if;
end proc:
seq(A362597(n), n=0..60) ; # R. J. Mathar, Jan 11 2024
PROG
(PARI) a(n)={0^n + sum(k=0, n-1, sum(i=0, k, binomial(n - 1, i)*(k + 1)*binomial(2*n - 2 - k, n - 1 - k)/n))} \\ Andrew Howroyd, Apr 27 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Lara Pudwell, Apr 27 2023
STATUS
approved