login
A125188
Number of Dumont permutations of the first kind of length 2n avoiding the patterns 2413 and 4132. Also number of Dumont permutations of the first kind of length 2n avoiding the patterns 1423 and 3142.
1
1, 1, 3, 12, 54, 259, 1294, 6655, 34986, 187149, 1015407, 5574829, 30915904, 172933249, 974605751, 5528804444, 31546576802, 180931023589, 1042503934315, 6031773336043, 35030156585236, 204135876541762, 1193291688154639
OFFSET
0,3
LINKS
A. Burstein, Restricted Dumont permutations, arXiv:math/0402378 [math.CO], 2004
A. Burstein, Restricted Dumont permutations, Annals of Combinatorics, 9, 2005, 269-280 (Theorem 3.13).
Matteo Cervetti and Luca Ferrari, Pattern avoidance in the matching pattern poset, arXiv:2009.01024 [math.CO], 2020.
Y. Sun and Z. Wang, Consecutive pattern avoidances in non-crossing trees, Graph. Combinat. 26 (2010) 815-832, G_{uud}
FORMULA
G.f.=[1+xC(x)-sqrt(1-xC(x)-5x)]/[2x(1+C(x))], where C(x)=(1-sqrt(1-4x))/(2x) is the Catalan function.
D-finite with recurrence 32*(n-1)*(2*n-1)*(n+1)*a(n) +8*(-148*n^3+461*n^2-367*n+14)*a(n-1) +4*(2197*n^3-13436*n^2+25653*n-14694)*a(n-2) +2*(-16868*n^3+159415*n^2-483427*n+468080)*a(n-3) +(66623*n^3-867526*n^2+3651197*n-4985254)*a(n-4) -20*(2*n-9)*(1027*n^2-13868*n+42561)*a(n-5) -10500*(n-5)*(2*n-9)*(2*n-11)*a(n-6)=0. - R. J. Mathar, Jul 27 2013
a(n) ~ 5^(2*n+3/2) / (9 * 4^n * n^(3/2) * sqrt(3*Pi)). - Vaclav Kotesovec, Feb 03 2014
MAPLE
C:=(1-sqrt(1-4*x))/2/x: G:=(1+x*C-sqrt(1-x*C-5*x))/2/x/(1+C): Gser:=series(G, x=0, 30): seq(coeff(Gser, x, n), n=0..26);
MATHEMATICA
CoefficientList[Series[(-3+Sqrt[2]*Sqrt[1+Sqrt[1-4*x]-10*x] + Sqrt[1-4*x])/(2*(-1+Sqrt[1-4*x]-2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 03 2014 *)
CROSSREFS
Cf. A125187.
Sequence in context: A055835 A366118 A362597 * A054666 A006026 A158826
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 19 2006
STATUS
approved