OFFSET
0,3
LINKS
A. Burstein, Restricted Dumont permutations, arXiv:math/0402378 [math.CO], 2004
A. Burstein, Restricted Dumont permutations, Annals of Combinatorics, 9, 2005, 269-280 (Theorem 3.13).
Matteo Cervetti and Luca Ferrari, Pattern avoidance in the matching pattern poset, arXiv:2009.01024 [math.CO], 2020.
Matteo Cervetti and Luca Ferrari, Enumeration of Some Classes of Pattern Avoiding Matchings, with a Glimpse into the Matching Pattern Poset, Annals of Combinatorics (2022).
Y. Sun and Z. Wang, Consecutive pattern avoidances in non-crossing trees, Graph. Combinat. 26 (2010) 815-832, G_{uud}
FORMULA
G.f.=[1+xC(x)-sqrt(1-xC(x)-5x)]/[2x(1+C(x))], where C(x)=(1-sqrt(1-4x))/(2x) is the Catalan function.
D-finite with recurrence 32*(n-1)*(2*n-1)*(n+1)*a(n) +8*(-148*n^3+461*n^2-367*n+14)*a(n-1) +4*(2197*n^3-13436*n^2+25653*n-14694)*a(n-2) +2*(-16868*n^3+159415*n^2-483427*n+468080)*a(n-3) +(66623*n^3-867526*n^2+3651197*n-4985254)*a(n-4) -20*(2*n-9)*(1027*n^2-13868*n+42561)*a(n-5) -10500*(n-5)*(2*n-9)*(2*n-11)*a(n-6)=0. - R. J. Mathar, Jul 27 2013
a(n) ~ 5^(2*n+3/2) / (9 * 4^n * n^(3/2) * sqrt(3*Pi)). - Vaclav Kotesovec, Feb 03 2014
MAPLE
C:=(1-sqrt(1-4*x))/2/x: G:=(1+x*C-sqrt(1-x*C-5*x))/2/x/(1+C): Gser:=series(G, x=0, 30): seq(coeff(Gser, x, n), n=0..26);
MATHEMATICA
CoefficientList[Series[(-3+Sqrt[2]*Sqrt[1+Sqrt[1-4*x]-10*x] + Sqrt[1-4*x])/(2*(-1+Sqrt[1-4*x]-2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 03 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 19 2006
STATUS
approved