login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158826
Third iteration of x*C(x) where C(x) is the Catalan function (A000108).
6
1, 3, 12, 54, 260, 1310, 6824, 36478, 199094, 1105478, 6227712, 35520498, 204773400, 1191572004, 6990859416, 41313818217, 245735825082, 1470125583756, 8840948601024, 53417237877396, 324123222435804, 1974317194619712
OFFSET
1,2
COMMENTS
Series reversion of x - 3*x^2 + 6*x^3 - 9*x^4 + 10*x^5 - 8*x^6 + 4*x^7 - x^8. - Benedict W. J. Irwin, Oct 19 2016
Column 1 of A106566^3 (see Barry, Section 3). - Peter Bala, Apr 11 2017
LINKS
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5, pp. 1-24.
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
a(n) = (1/n)*Sum_{k=1..n} [ binomial(2*k-2,k-1)*Sum_{i=k..n}( binomial(-k+2*i-1,i-1)*binomial(2*n-i-1,n-1) ) ]. - Vladimir Kruchinin, Jan 24 2013
G.f.: (1 - sqrt(-1 + 2*sqrt(-1 + 2*sqrt(1 - 4*x))))/2. - Benedict W. J. Irwin, Oct 19 2016
a(n) ~ 2^(8*n - 3) / (sqrt(5*Pi) * n^(3/2) * 39^(n - 1/2)). - Vaclav Kotesovec, Jul 20 2019
Conjecture D-finite with recurrence 1053*n*(n-1)*(n-2)*(n-3)*a(n) -36*(n-1)*(n-2)*(n-3)*(634*n-1367)*a(n-1) +24*(n-2)*(n-3)*(7966*n^2-43500*n+61181)*a(n-2) -8*(n-3)*(96128*n^3-957424*n^2+3221878*n-3665189)*a(n-3) +16*(91904*n^4-1446528*n^3+8575792*n^2-22703688*n+22652013)*a(n-4) -256*(8*n-35)*(8*n-41)*(8*n-39)*(8*n-37)*a(n-5)=0. - R. J. Mathar, Aug 30 2021
MATHEMATICA
max = 22; c[x_] := Sum[ CatalanNumber[n]*x^n, {n, 0, max}]; f[x_] := x*c[x]; CoefficientList[ Series[ f@f@f@x, {x, 0, max}], x] // Rest (* Jean-François Alcover, Jan 24 2013 *)
Rest@CoefficientList[InverseSeries[x-3x^2+6x^3-9x^4+10x^5-8x^6+4x^7-x^8+O[x]^30], x] (* Benedict W. J. Irwin, Oct 19 2016 *)
PROG
(PARI) a(n)=local(F=serreverse(x-x^2+O(x^(n+1))), G=x); for(i=1, 3, G=subst(F, x, G)); polcoeff(G, n)
(Maxima)
a(n):=sum(binomial(2*k-2, k-1)*sum(binomial(-k+2*i-1, i-1)*binomial(2*n-i-1, n-1), i, k, n), k, 1, n)/n; // Vladimir Kruchinin, Jan 24 2013
(Python)
from sympy import binomial as C
def a(n):
return sum(C(2*k - 2, k - 1) * sum(C(-k + 2*i - 1, i - 1) * C(2*n - i - 1, n - 1) for i in range(k, n + 1)) for k in range(1, n + 1)) / n
[a(n) for n in range(1, 51)] # Indranil Ghosh, Apr 12 2017
CROSSREFS
Cf. A121988 (2nd), A158825, A158827 (4th), A158828, A158829.
Sequence in context: A125188 A054666 A006026 * A107264 A370441 A200740
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 28 2009
STATUS
approved