The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200740 Generating function satisfies A(x)=1-xA(x)+2x(A(x))^2-x^2(A(x))^3+x^2(A(x))^4. 1
 1, 1, 3, 12, 54, 261, 1324, 6954, 37493, 206316, 1154050, 6542485, 37507919, 217081155, 1266646114, 7443100944, 44008522719, 261631301144, 1562969609155, 9377744249277, 56486588669929, 341452466500382, 2070684006442310, 12594325039504367, 76808163066135791 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also appears in the context of pattern avoiding ternary trees. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..400 Nathan Gabriel, Katherine Peske, Lara Pudwell, and Samuel Tay, Pattern Avoidance in Ternary Trees, arXiv:1110.2225 [math.CO], 2011. N. Gabriel, K. Peske, L. Pudwell, S. Tay, Pattern Avoidance in Ternary Trees, J. Int. Seq. 15 (2012) # 12.1.5. MAPLE n:=30: L:=1 - a - x*a + 2*x*a^2 - x^2*a^3 + x^2*a^4: L:=subs(a=add(q[k]*x^k, k=0..n), L): Y:=expand(L): for i from 0 to degree(Y, x) do     p[i]:=coeff(Y, x, i): od: S:=solve({ seq(p[t]=0, t=0..n)}, {seq(q[t], t=0..n)}): normal(subs(S, [seq(q[t], t=0..n)])); # second Maple program: a:= n-> coeff(series(RootOf(A=1-x*A+2*x*A^2-x^2*A^3+x^2*A^4, A)         , x, n+1), x, n): seq(a(n), n=0..40);  # Alois P. Heinz, Nov 09 2013 MATHEMATICA A[_] = 0; Do[A[x_] = 1 - x A[x] + 2x A[x]^2 - x^2 A[x]^3 + x^2 A[x]^4 + O[x]^25, {25}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 28 2018 *) CROSSREFS Sequence in context: A006026 A158826 A107264 * A177133 A186241 A193115 Adjacent sequences:  A200737 A200738 A200739 * A200741 A200742 A200743 KEYWORD nonn AUTHOR Lara Pudwell, Nov 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 17:18 EDT 2021. Contains 345388 sequences. (Running on oeis4.)