Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jan 11 2024 10:07:40
%S 1,1,3,12,54,261,1324,6954,37493,206316,1154050,6542485,37507919,
%T 217081155,1266646114,7443100944,44008522719,261631301144,
%U 1562969609155,9377744249277,56486588669929,341452466500382,2070684006442310,12594325039504367,76808163066135791
%N Generating function satisfies A(x)=1-xA(x)+2x(A(x))^2-x^2(A(x))^3+x^2(A(x))^4.
%C Also appears in the context of pattern avoiding ternary trees.
%H Alois P. Heinz, <a href="/A200740/b200740.txt">Table of n, a(n) for n = 0..400</a>
%H Nathan Gabriel, Katherine Peske, Lara Pudwell, and Samuel Tay, <a href="http://arxiv.org/abs/1110.2225">Pattern Avoidance in Ternary Trees</a>, arXiv:1110.2225 [math.CO], 2011.
%H N. Gabriel, K. Peske, L. Pudwell, S. Tay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Pudwell/pudwell.html">Pattern Avoidance in Ternary Trees</a>, J. Int. Seq. 15 (2012) # 12.1.5.
%F D-finite with recurrence 9*n*(3*n+2)*(9637049385113*n -13150529182719) *(3*n+1)*a(n) +3*(-1867245272511941*n^4 +3938815702450522*n^3 -1829703422934531*n^2 -40908425929938*n +80119802734368)*a(n-1) +3*(1493812832168185*n^4 -11081290962331766*n^3 +30368478809400583*n^2 -37445753408742482*n +17518049080170408)*a(n-2) +2*(-3598515629532857*n^4 +51918859363655934*n^3 -272767116207263419*n^2 +607523860755165342*n -484618766805936168)*a(n-3) +2*(2236067158786314*n^4 -43895348429968415*n^3 +313117370004358791*n^2 -968797762596343960*n +1100409843957627312)*a(n-4) +4*(-320929802901755*n^4 +7262334358284366*n^3 -58466924652690997*n^2 +201695420809801662*n -253987363669614120)*a(n-5) +2*(n-6) *(56449675289272*n^3 -1539119961654835*n^2 +11344967150541329*n -25343984173596980)*a(n-6) +2*(n-6) *(n-7) *(88750351258118*n^2 -884530270439421*n +2059300905886804)*a(n-7) +4*-(6920632454763*n -35058029508284)*(n-7)*(n-8)*(2*n-15)*a(n-8)=0. - _R. J. Mathar_, Jan 11 2024
%p n:=30:
%p L:=1 - a - x*a + 2*x*a^2 - x^2*a^3 + x^2*a^4:
%p L:=subs(a=add(q[k]*x^k,k=0..n),L):
%p Y:=expand(L):
%p for i from 0 to degree(Y,x) do
%p p[i]:=coeff(Y,x,i):
%p od:
%p S:=solve({ seq(p[t]=0, t=0..n)}, {seq(q[t], t=0..n)}):
%p normal(subs(S,[seq(q[t], t=0..n)]));
%p # second Maple program:
%p a:= n-> coeff(series(RootOf(A=1-x*A+2*x*A^2-x^2*A^3+x^2*A^4, A)
%p , x, n+1), x, n):
%p seq(a(n), n=0..40); # _Alois P. Heinz_, Nov 09 2013
%t A[_] = 0; Do[A[x_] = 1 - x A[x] + 2x A[x]^2 - x^2 A[x]^3 + x^2 A[x]^4 + O[x]^25, {25}]; CoefficientList[A[x], x] (* _Jean-François Alcover_, Nov 28 2018 *)
%K nonn
%O 0,3
%A _Lara Pudwell_, Nov 21 2011