The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006026 Number of column-convex polyominoes with perimeter n. (Formerly M2924) 4
 1, 3, 12, 54, 260, 1310, 6821, 36413, 198227, 1096259, 6141764, 34784432, 198828308, 1145544680, 6645621536, 38786564126, 227585926704, 1341757498470, 7944249448686, 47217102715624, 281615520373954, 1684957401786580, 10110628493454482, 60830401073611514 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS With offset 2, a(n) = number of directed column-convex polyominoes with directed-site perimeter = n. Directed means every cell (unit square) is reachable from the lower left cell, which is assumed to touch the origin. The directed-site perimeter is the number of unit squares in the first quadrant outside the polyomino but sharing at least one side with it. For example, the polyomino consisting of only one cell (with vertices (0,0),(1,0),(1,1),(0,1)) has directed-site perimeter = 2 due to the squares just above and to the right of it. - David Callan, Nov 29 2007 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Colin Barker, Table of n, a(n) for n = 1..1000 M.-P. Delest, Utilisation des Langages Algébriques et du Calcul Formel Pour le Codage et l'Enumeration des Polyominos, Ph.D. Dissertation, Université Bordeaux I, May 1987. [Scanned copy, with permission. A very large file.] M.-P. Delest, Utilisation des Langages Algébriques et du Calcul Formel Pour le Codage et l'Enumeration des Polyominos, Ph.D. Dissertation, Université Bordeaux I, May 1987. (Annotated scanned copy of a small part of the thesis) M.-P. Delest, Generating functions for column-convex polyominoes, J. Combin. Theory Ser. A 48 (1988), no. 1, 12-31. Maylis P. Delest and Serge Dulucq, Enumeration of Directed Column-Convex Animals with a Given Perimeter and Area, Croatica Chemica Acta, 66 (1993), 59-80. G. S. Joyce and A. J. Guttmann, Exact results for the generating function of directed column-convex animals on the square lattice, J. Physics A: Math. General 27 (1994) 4359-4367. FORMULA The g.f. A(x) = x + x^2 + 3x^3 + ... satisfies A^3 - 3A^2 + (1+2x)A - x = 0. - David Callan, Nov 29 2007 MATHEMATICA a[1]=1; a[2]=1; a[3]=3; a[n_]/; n>=4 := a[n] = ( 2(n-1)(21n-34)a[n-1] - (3n-8)(23n-43)a[n-2] + 16(n-3)(2n-7)a[n-3] )/(5(n-1)n); Table[a[n], {n, 10}] (* David Callan, Nov 29 2007 *) CROSSREFS Cf. A006027, A259332, A259333. Sequence in context: A362597 A125188 A054666 * A158826 A107264 A200740 Adjacent sequences: A006023 A006024 A006025 * A006027 A006028 A006029 KEYWORD nonn,easy AUTHOR Simon Plouffe EXTENSIONS Delest thesis provided by M.-P. Delest and scanned by Simon Plouffe, Jan 16 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 02:45 EST 2023. Contains 367717 sequences. (Running on oeis4.)