login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125187
Number of Dumont permutations of the first kind of length 2n avoiding the patterns 1423 and 4132.
3
1, 1, 3, 12, 52, 232, 1049, 4777, 21845, 100159, 460023, 2115350, 9735205, 44829766, 206526972, 951759621, 4387156587, 20226421380, 93264500832, 430091815527, 1983549213861, 9148582037193, 42197572190160, 194643215702835
OFFSET
0,3
COMMENTS
[1, 3, 12, 52, 232, ...] is INVERT transform of [1, 2, 27, 108, 440, ...] A026726. - Michael Somos, Apr 15 2012
HANKEL transform of sequence and the sequence omitting a(0) is the odd and even bisections of Fibonacci numbers respectively. This is the unique sequence with that property. - Michael Somos, Apr 15 2012
Bisection (even part) of A224747. - Alois P. Heinz, Jul 29 2013
LINKS
Cyril Banderier, Michael Wallner, Lattice paths with catastrophes, arXiv:1707.01931 [math.CO], 2017.
Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
A. Burstein, Restricted Dumont permutations, arXiv:math/0402378 [math.CO], 2004
A. Burstein, Restricted Dumont permutations, Annals of Combinatorics, 9, 2005, 269-280 (Theorem 3.12).
FORMULA
G.f.: [2-(1+x)C(x)]/[2-x-(1+x)C(x)], where C(x)=(1-sqrt(1-4x))/(2x) is the Catalan function.
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) = upper left term in M^n, where M is an infinite square production matrix in which two columns of (1,2,3,...) are prepended to an infinite lower triangular matrix of all 1's and the rest zeros, as follows:
1, 1, 0, 0, 0, 0, ...
2, 2, 1, 0, 0, 0, ...
3, 3, 1, 1, 0, 0, ...
4, 4, 1, 1, 1, 0, ...
5, 5, 1, 1, 1, 1, ...
... (End)
Given g.f. A(x), then 0 = A(x)^2 * (x^3 - 2*x^2 + 5*x - 1) + A(x) *(x^2 - 9*x + 2) + (x^2 + 4*x -1). - Michael Somos, Jan 14 2014
0 = a(n)*(16*a(n+1) +6*a(n+2) -14*a(n+3) +210*a(n+4) -128*a(n+5) +18*a(n+6)) +a(n+1)*(-46*a(n+1) +143*a(n+2) -173*a(n+3) -283*a(n+4) +202*a(n+5) -29*a(n+6)) +a(n+2)*(-63*a(n+2) +386*a(n+3) +765*a(n+4) -529*a(n+5) +75*a(n+6)) +a(n+3)*(-559*a(n+3) +509*a(n+4) -149*a(n+5) +19*a(n+6)) +a(n+4)*(-108*a(n+4) +71*a(n+5) -12*a(n+6)) +a(n+5)*(-4*a(n+5) +a(n+6)). - Michael Somos, Jan 14 2014
G.f.: ( 2 - 9*x + x^2 + (x + x^2) * sqrt(1 - 4*x) ) / (2 - 10*x + 4*x^2 - 2*x^3). - Michael Somos, Apr 15 2012
G.f. = (1 - 3*y + y^2) / (1 - 4*y + 3*y^2 - y^3) = 1 / (1 - y / (1 - y / (1 - 2*y / (1 + y / (2 - y))))) where y = (1 - sqrt(1 - 4*x)) / 2. - Michael Somos, Apr 12 2012
D-finite with recurrence (-n+1)*a(n) +4*(2*n-3)*a(n-1) +(-13*n+19)*a(n-2) +(-13*n+75)*a(n-3) +(5*n-29)*a(n-4) +2*(-2*n+9)*a(n-5)=0. - R. J. Mathar, Jul 27 2013
EXAMPLE
G.f. = 1 + x + 3*x^2 + 12*x^3 + 52*x^4 + 232*x^5 + 1049*x^6 + 4777*x^7 + 21845*x^8 + ...
MAPLE
C:=(1-sqrt(1-4*x))/2/x: G:=(2-(1+x)*C)/(2-x-(1+x)*C): Gser:=series(G, x=0, 30): seq(coeff(Gser, x, n), n=0..26);
MATHEMATICA
a[ n_] := SeriesCoefficient[ (2 - 9 x + x^2 + (x + x^2) Sqrt[1 - 4 x]) / (2 (1 - 5 x + 2 x^2 - x^3)), {x, 0, n}]; (* Michael Somos, Jan 14 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( (2 - 9*x + x^2 + (x + x^2) * sqrt(1 - 4*x + x * O(x^n)) ) / (2 * (1 - 5*x + 2*x^2 - x^3)), n))}; /* Michael Somos, Jan 14 2014 */
CROSSREFS
Sequence in context: A227810 A368971 A362595 * A151190 A151191 A151192
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 19 2006
STATUS
approved