login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Dumont permutations of the first kind of length 2n avoiding the patterns 1423 and 4132.
3

%I #39 Jan 20 2024 09:17:59

%S 1,1,3,12,52,232,1049,4777,21845,100159,460023,2115350,9735205,

%T 44829766,206526972,951759621,4387156587,20226421380,93264500832,

%U 430091815527,1983549213861,9148582037193,42197572190160,194643215702835

%N Number of Dumont permutations of the first kind of length 2n avoiding the patterns 1423 and 4132.

%C [1, 3, 12, 52, 232, ...] is INVERT transform of [1, 2, 27, 108, 440, ...] A026726. - _Michael Somos_, Apr 15 2012

%C HANKEL transform of sequence and the sequence omitting a(0) is the odd and even bisections of Fibonacci numbers respectively. This is the unique sequence with that property. - _Michael Somos_, Apr 15 2012

%C Bisection (even part) of A224747. - _Alois P. Heinz_, Jul 29 2013

%H Alois P. Heinz, <a href="/A125187/b125187.txt">Table of n, a(n) for n = 0..1000</a>

%H Cyril Banderier, Michael Wallner, <a href="https://arxiv.org/abs/1707.01931">Lattice paths with catastrophes</a>, arXiv:1707.01931 [math.CO], 2017.

%H Paul Barry, <a href="https://arxiv.org/abs/1912.01124">A Note on Riordan Arrays with Catalan Halves</a>, arXiv:1912.01124 [math.CO], 2019.

%H A. Burstein, <a href="http://arxiv.org/abs/math/0402378">Restricted Dumont permutations</a>, arXiv:math/0402378 [math.CO], 2004

%H A. Burstein, <a href="http://dx.doi.org/10.1007/s00026-005-0256-4">Restricted Dumont permutations</a>, Annals of Combinatorics, 9, 2005, 269-280 (Theorem 3.12).

%F G.f.: [2-(1+x)C(x)]/[2-x-(1+x)C(x)], where C(x)=(1-sqrt(1-4x))/(2x) is the Catalan function.

%F From _Gary W. Adamson_, Jul 11 2011: (Start)

%F a(n) = upper left term in M^n, where M is an infinite square production matrix in which two columns of (1,2,3,...) are prepended to an infinite lower triangular matrix of all 1's and the rest zeros, as follows:

%F 1, 1, 0, 0, 0, 0, ...

%F 2, 2, 1, 0, 0, 0, ...

%F 3, 3, 1, 1, 0, 0, ...

%F 4, 4, 1, 1, 1, 0, ...

%F 5, 5, 1, 1, 1, 1, ...

%F ... (End)

%F Given g.f. A(x), then 0 = A(x)^2 * (x^3 - 2*x^2 + 5*x - 1) + A(x) *(x^2 - 9*x + 2) + (x^2 + 4*x -1). - _Michael Somos_, Jan 14 2014

%F 0 = a(n)*(16*a(n+1) +6*a(n+2) -14*a(n+3) +210*a(n+4) -128*a(n+5) +18*a(n+6)) +a(n+1)*(-46*a(n+1) +143*a(n+2) -173*a(n+3) -283*a(n+4) +202*a(n+5) -29*a(n+6)) +a(n+2)*(-63*a(n+2) +386*a(n+3) +765*a(n+4) -529*a(n+5) +75*a(n+6)) +a(n+3)*(-559*a(n+3) +509*a(n+4) -149*a(n+5) +19*a(n+6)) +a(n+4)*(-108*a(n+4) +71*a(n+5) -12*a(n+6)) +a(n+5)*(-4*a(n+5) +a(n+6)). - _Michael Somos_, Jan 14 2014

%F G.f.: ( 2 - 9*x + x^2 + (x + x^2) * sqrt(1 - 4*x) ) / (2 - 10*x + 4*x^2 - 2*x^3). - _Michael Somos_, Apr 15 2012

%F G.f. = (1 - 3*y + y^2) / (1 - 4*y + 3*y^2 - y^3) = 1 / (1 - y / (1 - y / (1 - 2*y / (1 + y / (2 - y))))) where y = (1 - sqrt(1 - 4*x)) / 2. - _Michael Somos_, Apr 12 2012

%F D-finite with recurrence (-n+1)*a(n) +4*(2*n-3)*a(n-1) +(-13*n+19)*a(n-2) +(-13*n+75)*a(n-3) +(5*n-29)*a(n-4) +2*(-2*n+9)*a(n-5)=0. - _R. J. Mathar_, Jul 27 2013

%e G.f. = 1 + x + 3*x^2 + 12*x^3 + 52*x^4 + 232*x^5 + 1049*x^6 + 4777*x^7 + 21845*x^8 + ...

%p C:=(1-sqrt(1-4*x))/2/x: G:=(2-(1+x)*C)/(2-x-(1+x)*C): Gser:=series(G,x=0,30): seq(coeff(Gser,x,n),n=0..26);

%t a[ n_] := SeriesCoefficient[ (2 - 9 x + x^2 + (x + x^2) Sqrt[1 - 4 x]) / (2 (1 - 5 x + 2 x^2 - x^3)), {x, 0, n}]; (* _Michael Somos_, Jan 14 2014 *)

%o (PARI) {a(n) = if( n<0, 0, polcoeff( (2 - 9*x + x^2 + (x + x^2) * sqrt(1 - 4*x + x * O(x^n)) ) / (2 * (1 - 5*x + 2*x^2 - x^3)), n))}; /* _Michael Somos_, Jan 14 2014 */

%Y Cf. A125188, A224747.

%K nonn

%O 0,3

%A _Emeric Deutsch_, Dec 19 2006