The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224747 Number of lattice paths from (0,0) to (n,0) that do not go below the x-axis and consist of steps U=(1,1), D=(1,-1) and H=(1,0), where H-steps are only allowed if y=1. 2
 1, 0, 1, 1, 3, 5, 12, 23, 52, 105, 232, 480, 1049, 2199, 4777, 10092, 21845, 46377, 100159, 213328, 460023, 981976, 2115350, 4522529, 9735205, 20836827, 44829766, 96030613, 206526972, 442675064, 951759621, 2040962281, 4387156587, 9411145925, 20226421380 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Apparently A125187 is even bisection. - R. J. Mathar, Jul 27 2013 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 C. Banderier and M. Wallner, Lattice paths with catastrophes, SLC 77, Strobl - 12.09.2016, H(x). Cyril Banderier and Michael Wallner, Lattice paths with catastrophes, arXiv:1707.01931 [math.CO], 2017. Jean-Luc Baril and Sergey Kirgizov, Bijections from Dyck and Motzkin meanders with catastrophes to pattern avoiding Dyck paths, arXiv:2104.01186 [math.CO], 2021. Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Dyck Paths with catastrophes modulo the positions of a given pattern, Australasian J. Comb. (2022) Vol. 84, No. 2, 398-418. FORMULA a(n) = Sum_{k=0..floor((n-2)/2)} A009766(2*n-3*k-3, k) for n >= 2. - Johannes W. Meijer, Jul 22 2013 HANKEL transform is A000012. HANKEL transform omitting a(0) is a period 4 sequence [0, -1, 0, 1, ...] = -A101455. - Michael Somos, Jan 14 2014 Given g.f. A(x), then 0 = A(x)^2 * (x^3 + 2*x^2 + x - 1) + A(x) * (-2*x^2 - 3*x + 2) + (2*x - 1). - Michael Somos, Jan 14 2014 0 = a(n)*(a(n+1) +2*a(n+2) +a(n+3) -a(n+4)) +a(n+1)*(2*a(n+1) +5*a(n+2) +a(n+3) -2*a(n+4)) +a(n+2)*(2*a(n+2) -a(n+3) -a(n+4)) +a(n+3)*(-a(n+3) +a(n+4)). - Michael Somos, Jan 14 2014 G.f.: (2 - 3*x - 2*x^2 + x * sqrt(1 - 4*x^2)) / (2 * (1 - x - 2*x^2 - x^3)). - Michael Somos, Jan 14 2014 a(2*n) = A125187(n). D-finite with recurrence (-n+1)*a(n) +(n-1)*a(n-1) +6*(n-3)*a(n-2) +3*(-n+5)*a(n-3) +8*(-n+4)*a(n-4) +4*(-n+4)*a(n-5)=0. - R. J. Mathar, Sep 15 2021 EXAMPLE a(5) = 5: UHHHD, UDUHD, UUDHD, UHDUD, UHUDD. a(6) = 12: UHHHHD, UDUHHD, UUDHHD, UHDUHD, UHUDHD, UHHDUD, UDUDUD, UUDDUD, UHHUDD, UDUUDD, UUDUDD, UUUDDD. G.f. = 1 + x^2 + x^3 + 3*x^4 + 5*x^5 + 12*x^6 + 23*x^7 + 52*x^8 + 105*x^9 + ... MAPLE a:= proc(n) option remember; `if`(n<5, [1, 0, 1, 1, 3][n+1], a(n-1)+ (6*(n-3)*a(n-2) -3*(n-5)*a(n-3) -8*(n-4)*a(n-4) -4*(n-4)*a(n-5))/(n-1)) end: seq(a(n), n=0..40); MATHEMATICA a[n_] := a[n] = If[n < 5, {1, 0, 1, 1, 3}[[n+1]], a[n-1] + (6*(n-3)*a[n-2] - 3*(n-5)*a[n-3] - 8*(n-4)*a[n-4] - 4*(n-4)*a[n-5])/(n-1)]; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Jun 20 2013, translated from Maple *) a[ n_] := SeriesCoefficient[ (2 - 3 x - 2 x^2 + x Sqrt[1 - 4 x^2]) / (2 (1 - x - 2 x^2 - x^3)), {x, 0, n}] (* Michael Somos, Jan 14 2014 *) PROG (PARI) {a(n) = if( n<0, 0, polcoeff( (2 - 3*x - 2*x^2 + x * sqrt(1 - 4*x^2 + x * O(x^n)) ) / (2 * (1 - x - 2*x^2 - x^3)) n))} /* Michael Somos, Jan 14 2014 */ CROSSREFS Cf. A000108 (without H-steps), A001006 (unrestricted H-steps), A057977 (<=1 H-step). Cf. A000012, A101455, A125187, A001405 (invert transform). Sequence in context: A034758 A215109 A131322 * A036657 A047761 A349055 Adjacent sequences: A224744 A224745 A224746 * A224748 A224749 A224750 KEYWORD nonn AUTHOR Alois P. Heinz, Apr 17 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 04:17 EST 2023. Contains 367506 sequences. (Running on oeis4.)