

A224746


a(n) = (Product_{d=1..n1} (2^d1)) mod (2^n1).


1



0, 1, 3, 6, 5, 0, 7, 60, 301, 837, 11, 2835, 13, 11811, 13454, 2040, 17, 179361, 19, 639375, 1082802, 2818719, 23, 12878775, 28142451, 44845725, 131853841, 161290635, 29, 911545173, 31, 1048560, 4862374202, 11455474329, 26924001270, 62380858995, 37
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

E. Vantieghem proved that a(n) = n if and only if n is an odd prime (see link).


LINKS



MAPLE

a:= proc(n) local d, m, r; r, m:= 1, 2^n1;
for d to n1 do r:= irem(r*(2^d1), m) od;
irem(r, m)
end:


MATHEMATICA

Table[Mod[Product[2^d1, {d, 1, n1}], 2^n1], {n, 1, 37}] (* Geoffrey Critzer, Sep 28 2013 *)


PROG

(PARI) a(n) = prod(d=1, n1, 2^d1) % (2^n1) \\ Michel Marcus, Apr 17 2013


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



