Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #70 Oct 29 2024 19:59:57
%S 1,0,1,1,3,5,12,23,52,105,232,480,1049,2199,4777,10092,21845,46377,
%T 100159,213328,460023,981976,2115350,4522529,9735205,20836827,
%U 44829766,96030613,206526972,442675064,951759621,2040962281,4387156587,9411145925,20226421380
%N Number of lattice paths from (0,0) to (n,0) that do not go below the x-axis and consist of steps U=(1,1), D=(1,-1) and H=(1,0), where H-steps are only allowed if y=1.
%C Also the number of non-capturing (cf. A054391) set-partitions of {1..n} without singletons. - _Christian Sievers_, Oct 29 2024
%H Alois P. Heinz, <a href="/A224747/b224747.txt">Table of n, a(n) for n = 0..1000</a>
%H C. Banderier and M. Wallner, <a href="http://www.emis.de/journals/SLC/wpapers/s77vortrag/wallner.pdf">Lattice paths with catastrophes</a>, SLC 77, Strobl - 12.09.2016, H(x).
%H Cyril Banderier and Michael Wallner, <a href="https://arxiv.org/abs/1707.01931">Lattice paths with catastrophes</a>, arXiv:1707.01931 [math.CO], 2017.
%H Jean-Luc Baril and Sergey Kirgizov, <a href="https://arxiv.org/abs/2104.01186">Bijections from Dyck and Motzkin meanders with catastrophes to pattern avoiding Dyck paths</a>, arXiv:2104.01186 [math.CO], 2021.
%H Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, <a href="https://ajc.maths.uq.edu.au/pdf/84/ajc_v84_p398.pdf">Dyck Paths with catastrophes modulo the positions of a given pattern</a>, Australasian J. Comb. (2022) Vol. 84, No. 2, 398-418.
%F a(n) = Sum_{k=0..floor((n-2)/2)} A009766(2*n-3*k-3, k) for n >= 2. - _Johannes W. Meijer_, Jul 22 2013
%F a(2*n) = A125187(n) (bisection). - _R. J. Mathar_, Jul 27 2013
%F HANKEL transform is A000012. HANKEL transform omitting a(0) is a period 4 sequence [0, -1, 0, 1, ...] = -A101455. - _Michael Somos_, Jan 14 2014
%F Given g.f. A(x), then 0 = A(x)^2 * (x^3 + 2*x^2 + x - 1) + A(x) * (-2*x^2 - 3*x + 2) + (2*x - 1). - _Michael Somos_, Jan 14 2014
%F 0 = a(n)*(a(n+1) +2*a(n+2) +a(n+3) -a(n+4)) +a(n+1)*(2*a(n+1) +5*a(n+2) +a(n+3) -2*a(n+4)) +a(n+2)*(2*a(n+2) -a(n+3) -a(n+4)) +a(n+3)*(-a(n+3) +a(n+4)). - _Michael Somos_, Jan 14 2014
%F G.f.: (2 - 3*x - 2*x^2 + x * sqrt(1 - 4*x^2)) / (2 * (1 - x - 2*x^2 - x^3)). - _Michael Somos_, Jan 14 2014
%F D-finite with recurrence (-n+1)*a(n) +(n-1)*a(n-1) +6*(n-3)*a(n-2) +3*(-n+5)*a(n-3) +8*(-n+4)*a(n-4) +4*(-n+4)*a(n-5)=0. - _R. J. Mathar_, Sep 15 2021
%e a(5) = 5: UHHHD, UDUHD, UUDHD, UHDUD, UHUDD.
%e a(6) = 12: UHHHHD, UDUHHD, UUDHHD, UHDUHD, UHUDHD, UHHDUD, UDUDUD, UUDDUD, UHHUDD, UDUUDD, UUDUDD, UUUDDD.
%e G.f. = 1 + x^2 + x^3 + 3*x^4 + 5*x^5 + 12*x^6 + 23*x^7 + 52*x^8 + 105*x^9 + ...
%p a:= proc(n) option remember; `if`(n<5, [1, 0, 1, 1, 3][n+1],
%p a(n-1)+ (6*(n-3)*a(n-2) -3*(n-5)*a(n-3)
%p -8*(n-4)*a(n-4) -4*(n-4)*a(n-5))/(n-1))
%p end:
%p seq(a(n), n=0..40);
%t a[n_] := a[n] = If[n < 5, {1, 0, 1, 1, 3}[[n+1]], a[n-1] + (6*(n-3)*a[n-2] - 3*(n-5)*a[n-3] - 8*(n-4)*a[n-4] - 4*(n-4)*a[n-5])/(n-1)]; Table[a[n], {n, 0, 34}] (* _Jean-François Alcover_, Jun 20 2013, translated from Maple *)
%t a[ n_] := SeriesCoefficient[ (2 - 3 x - 2 x^2 + x Sqrt[1 - 4 x^2]) / (2 (1 - x - 2 x^2 - x^3)), {x, 0, n}] (* _Michael Somos_, Jan 14 2014 *)
%o (PARI) {a(n) = if( n<0, 0, polcoeff( (2 - 3*x - 2*x^2 + x * sqrt(1 - 4*x^2 + x * O(x^n)) ) / (2 * (1 - x - 2*x^2 - x^3)) n))} /* _Michael Somos_, Jan 14 2014 */
%Y Cf. A000108 (without H-steps), A001006 (unrestricted H-steps), A057977 (<=1 H-step).
%Y Cf. A000012, A101455, A125187, A001405 (invert transform).
%Y Inverse binomial transform of A054391.
%K nonn
%O 0,5
%A _Alois P. Heinz_, Apr 17 2013