OFFSET
0,3
LINKS
Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
FORMULA
For n>=1, a(n) = (n^2 + n + 4)/4*A000108(n) - 4^(n - 1)/2.
G.f.: 1+((7*x^2 - 6*x + 1)*sqrt(1 - 4*x) - 15*x^2 + 8*x - 1)/(2*(1 - 4*x)^(3/2)*x).
D-finite with recurrence (n+1)*a(n) +2*(-8*n+1)*a(n-1) +(95*n-117)*a(n-2) +2*(-124*n+291)*a(n-3) +120*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jan 11 2024
EXAMPLE
For n=3 the a(3)=12 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{1},{2}; {3},{1,2},{}.
MAPLE
A362595 := proc(n)
if n = 0 then
1;
else
(n^2+n+4)*A000108(n)/4 -4^(n-1)/2 ;
end if;
end proc:
seq(A362595(n), n=0..60) ; # R. J. Mathar, Jan 11 2024
PROG
(PARI) a(n)=if(n==0, 1, (n^2 + n + 4)*binomial(2*n, n)/(4*(n+1)) - 4^n/8) \\ Andrew Howroyd, Apr 27 2023
(Python)
from math import comb
def A362595(n): return ((n*(n+1)+4)*comb(n<<1, n)//(n+1)>>2)-(1<<(n<<1)-3) if n>1 else 1 # Chai Wah Wu, Apr 27 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Lara Pudwell, Apr 27 2023
STATUS
approved