login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362595
Number of parking functions of size n avoiding the patterns 132 and 321.
3
1, 1, 3, 12, 52, 229, 1006, 4387, 18978, 81489, 347614, 1474436, 6223328, 26156242, 109528108, 457167817, 1902808318, 7899987577, 32725812958, 135297527872, 558357811048, 2300564293942, 9465003608548, 38889193275142, 159591154157092, 654190748282074
OFFSET
0,3
LINKS
Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
FORMULA
For n>=1, a(n) = (n^2 + n + 4)/4*A000108(n) - 4^(n - 1)/2.
For n>=1, a(n) = A000108(n) + Sum_{m=1..n} (n-m)*A028364(n-1,m-1).
G.f.: 1+((7*x^2 - 6*x + 1)*sqrt(1 - 4*x) - 15*x^2 + 8*x - 1)/(2*(1 - 4*x)^(3/2)*x).
D-finite with recurrence (n+1)*a(n) +2*(-8*n+1)*a(n-1) +(95*n-117)*a(n-2) +2*(-124*n+291)*a(n-3) +120*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jan 11 2024
EXAMPLE
For n=3 the a(3)=12 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{1},{2}; {3},{1,2},{}.
MAPLE
A362595 := proc(n)
if n = 0 then
1;
else
(n^2+n+4)*A000108(n)/4 -4^(n-1)/2 ;
end if;
end proc:
seq(A362595(n), n=0..60) ; # R. J. Mathar, Jan 11 2024
PROG
(PARI) a(n)=if(n==0, 1, (n^2 + n + 4)*binomial(2*n, n)/(4*(n+1)) - 4^n/8) \\ Andrew Howroyd, Apr 27 2023
(Python)
from math import comb
def A362595(n): return ((n*(n+1)+4)*comb(n<<1, n)//(n+1)>>2)-(1<<(n<<1)-3) if n>1 else 1 # Chai Wah Wu, Apr 27 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Lara Pudwell, Apr 27 2023
STATUS
approved