Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jan 11 2024 09:12:56
%S 1,1,3,12,54,259,1293,6634,34716,184389,990711,5372088,29347794,
%T 161317671,891313569,4946324886,27552980088,153982124809,862997075691,
%U 4848839608228,27304369787694,154059320699211,870796075968693,4929937918315522,27950989413184404
%N Number of parking functions of size n avoiding the patterns 213 and 312.
%H Ayomikun Adeniran and Lara Pudwell, <a href="https://doi.org/10.54550/ECA2023V3S3R17">Pattern avoidance in parking functions</a>, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
%F For n>=1, a(n) = Sum_{k=0..n-1} Sum_{i=0..k} binomial(n - 1, i)*(k + 1)*binomial(2*n - 2 - k, n - 1 - k)/n.
%F D-finite with recurrence (n+1)*a(n) +3*(-4*n+1)*a(n-1) +(34*n-45)*a(n-2) +3*(4*n-17)*a(n-3) +3*(-n+4)*a(n-4)=0. - _R. J. Mathar_, Jan 11 2024
%e For n=3 the a(3)=12 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{2},{1}.
%p A362597 := proc(n)
%p if n = 0 then
%p 1;
%p else
%p add(add(binomial(n - 1, i)*(k + 1)*binomial(2*n - 2 - k, n - 1 - k)/n,i=0..k),k=0..n-1) ;
%p end if;
%p end proc:
%p seq(A362597(n),n=0..60) ; # _R. J. Mathar_, Jan 11 2024
%o (PARI) a(n)={0^n + sum(k=0, n-1, sum(i=0, k, binomial(n - 1, i)*(k + 1)*binomial(2*n - 2 - k, n - 1 - k)/n))} \\ _Andrew Howroyd_, Apr 27 2023
%Y Cf. A028365, A362596.
%K nonn,easy
%O 0,3
%A _Lara Pudwell_, Apr 27 2023