login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361024
a(n) = 1 if n and sigma(n) have equal 2-adic valuations, otherwise 0, where sigma is the sum of divisors function.
4
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
OFFSET
1
FORMULA
a(n) = [A336937(n) = A007814(n)] = [A361025(n) = 0], where [ ] is the Iverson bracket.
a(n) = A361023(n) - A324903(n).
a(A003961(n)) = A010052(n).
MATHEMATICA
a[n_] := If[OddQ[(Numerator[#]*Denominator[#]) &[DivisorSigma[-1, n]]], 1, 0]; Array[a, 100] (* Amiram Eldar, Mar 03 2023 *)
PROG
(PARI) A361024(n) = (valuation(sigma(n), 2)==valuation(n, 2));
CROSSREFS
Characteristic function of A216780.
Sequence in context: A369974 A369975 A369001 * A354037 A185118 A240332
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 03 2023
STATUS
approved