login
A216780
Numbers n such that numerator(sigma(n)/n) and denominator(sigma(n)/n) are both odd.
7
1, 9, 10, 12, 25, 26, 34, 44, 49, 56, 58, 74, 76, 81, 82, 90, 106, 120, 121, 122, 146, 169, 172, 178, 184, 194, 202, 216, 218, 225, 226, 234, 236, 260, 268, 274, 289, 298, 300, 306, 312, 314, 332, 340, 346, 361, 362, 386, 394, 396, 408, 428, 440, 441, 458
OFFSET
1,2
COMMENTS
a(n) contains odd squares (A016754), 3-perfect numbers (A005820) and 5-perfect numbers (A046060).
This is also the sequence of numbers x such that A243473(x) is even. - Michel Marcus, Jun 06 2014
LINKS
EXAMPLE
sigma(10)/10 = 9/5; both 9 and 5 are odd, so 10 is in the sequence.
MATHEMATICA
Select[Range[500], OddQ[Numerator[DivisorSigma[1, #]/#]] && OddQ[Denominator[DivisorSigma[1, #]/#]] &] (* Alonso del Arte, Sep 16 2012 *)
PROG
(PARI) ooab(k) = {for (i=1, k, ab = sigma(i)/i; if ((numerator(ab) % 2 == 1) && (denominator(ab) % 2 == 1), print1(i, ", ")); ); }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, Sep 16 2012
STATUS
approved