login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369974
Dirichlet inverse of A369001, where A369001(n) = 1 if n' / gcd(n,n') is even, otherwise 0, and n' stands for the arithmetic derivative of n, A003415.
8
1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, 0, 0, -1, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, -1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, -1, -1, 0, -1, 0
OFFSET
1,144
COMMENTS
a(144) = 2 is the first term > 1.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A369001(n/d) * a(d).
PROG
(PARI)
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
A369001(n) = !(A083345(n)%2);
memoA369974 = Map();
A369974(n) = if(1==n, 1, my(v); if(mapisdefined(memoA369974, n, &v), v, v = -sumdiv(n, d, if(d<n, A369001(n/d)*A369974(d), 0)); mapput(memoA369974, n, v); (v)));
CROSSREFS
Cf. A083345, A369001, A369975 (parity of terms), A369976 (positions of odd terms).
Agrees paritywise with A369978.
Cf. A358777, A359763, A359773, A359780 for similar sequences.
Sequence in context: A359595 A353557 A324917 * A369975 A369001 A361024
KEYWORD
sign
AUTHOR
Antti Karttunen, Feb 09 2024
STATUS
approved