login
A359329
Number of diagonals in a regular polygon with n sides not passing through the center.
1
0, 0, 5, 6, 14, 16, 27, 30, 44, 48, 65, 70, 90, 96, 119, 126, 152, 160, 189, 198, 230, 240, 275, 286, 324, 336, 377, 390, 434, 448, 495, 510, 560, 576, 629, 646, 702, 720, 779, 798, 860, 880, 945, 966, 1034, 1056, 1127, 1150, 1224, 1248, 1325, 1350, 1430, 1456, 1539, 1566, 1652, 1680
OFFSET
3,3
FORMULA
If n is odd, a(n) = (n^2 - 3*n)/2; if n is even, a(n) = (n^2 - 4*n)/2.
a(n) = A000096(n-3) - A142150(n-3).
G.f.: x^5*(5 + x - 2*x^2)/((1 - x)^3*(1 + x)^2). - Stefano Spezia, Jan 04 2023
MATHEMATICA
Table[(n*(n - 4 + BitGet[n, 0]))/2, {n, 3, 100}] (* Paolo Xausa, Oct 02 2024 *)
PROG
(Python)
def A359329(n): return (n*(n-4)+n*(n&1))>>1 # Chai Wah Wu, Jan 23 2023
CROSSREFS
A014106 and A054000 interleaved.
Sequence in context: A289895 A335785 A266304 * A308839 A099330 A322479
KEYWORD
nonn,easy
AUTHOR
Luk De Clercq, Dec 26 2022
STATUS
approved