login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359329
Number of diagonals in a regular polygon with n sides not passing through the center.
1
0, 0, 5, 6, 14, 16, 27, 30, 44, 48, 65, 70, 90, 96, 119, 126, 152, 160, 189, 198, 230, 240, 275, 286, 324, 336, 377, 390, 434, 448, 495, 510, 560, 576, 629, 646, 702, 720, 779, 798, 860, 880, 945, 966, 1034, 1056, 1127, 1150, 1224, 1248, 1325, 1350, 1430, 1456, 1539, 1566, 1652, 1680
OFFSET
3,3
FORMULA
If n is odd, a(n) = (n^2 - 3*n)/2; if n is even, a(n) = (n^2 - 4*n)/2.
a(n) = A000096(n-3) - A142150(n-3).
G.f.: x^5*(5 + x - 2*x^2)/((1 - x)^3*(1 + x)^2). - Stefano Spezia, Jan 04 2023
MATHEMATICA
Table[(n*(n - 4 + BitGet[n, 0]))/2, {n, 3, 100}] (* Paolo Xausa, Oct 02 2024 *)
PROG
(Python)
def A359329(n): return (n*(n-4)+n*(n&1))>>1 # Chai Wah Wu, Jan 23 2023
CROSSREFS
A014106 and A054000 interleaved.
Sequence in context: A289895 A335785 A266304 * A308839 A099330 A322479
KEYWORD
nonn,easy
AUTHOR
Luk De Clercq, Dec 26 2022
STATUS
approved