login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289895
Numbers that are the sum of distinct square pyramidal numbers (A000330).
1
0, 1, 5, 6, 14, 15, 19, 20, 30, 31, 35, 36, 44, 45, 49, 50, 55, 56, 60, 61, 69, 70, 74, 75, 85, 86, 90, 91, 92, 96, 97, 99, 100, 104, 105, 106, 110, 111, 121, 122, 126, 127, 135, 136, 140, 141, 145, 146, 147, 151, 152, 154, 155, 159, 160, 161, 165, 166, 170, 171, 175, 176, 177, 181, 182, 184, 185, 189, 190, 191, 195, 196, 200
OFFSET
1,3
COMMENTS
It appears that 1528 is the largest of 306 positive integers not in this sequence.
FORMULA
Exponents in expansion of Product_{k>=1} (1 + x^(k*(k+1)*(2*k+1)/6)).
EXAMPLE
20 is in the sequence because 20 = 1 + 5 + 14 = 1^2 + 1^2 + 2^2 + 1^2 + 2^2 + 3^2.
MATHEMATICA
max = 200; f[x_] := Product[1 + x^(k (k + 1) (2 k + 1)/6), {k, 1, 10}]; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, max}]]
CROSSREFS
Sequence in context: A314292 A294572 A084381 * A335785 A266304 A359329
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 14 2017
STATUS
approved