login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359328
Maximal coefficient of x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)).
6
1, 1, 1, 2, 4, 12, 46, 251, 1576, 11578, 94933, 875134, 8900088, 99276703, 1214131109, 16107824706, 229757728186, 3499486564517, 56862172844198, 980725126968577, 17899265342632635, 345197504845310134, 7005723403640260805, 149261757412790940113, 3329108788695272565243
OFFSET
0,4
COMMENTS
Excluding the term 1 from A326178, the exponents of the product x^0*x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)) are given by all the other terms of A326178.
a(n) is the number of compositions of the terms of the n-th row of A359337 into n prime parts less than or equal to prime(n), with the first part equal to 2, the second part less than or equal to 3, ..., and the n-th part less than or equal to prime(n).
MATHEMATICA
Table[Max[CoefficientList[Product[Sum[x^Prime[i], {i, k}], {k, n}], x]], {n, 0, 24}]
PROG
(PARI) a(n) = vecmax(Vec(prod(k=1, n, sum(i=1, k, x^prime(i))))); \\ Michel Marcus, Dec 27 2022
(Python)
from collections import Counter
from sympy import prime, primerange
def A359328(n):
if n == 0: return 1
c, p = {0:1}, list(primerange(prime(n)+1))
for k in range(1, n+1):
d = Counter()
for j in c:
a = c[j]
for i in p[:k]:
d[j+i] += a
c = d
return max(c.values()) # Chai Wah Wu, Feb 01 2024
CROSSREFS
Cf. A359337 (corresponding exponents), A359338 (minimal corresponding exponent), A359339 (maximal corresponding exponent).
Sequence in context: A165901 A074449 A364622 * A332235 A131387 A207647
KEYWORD
nonn
AUTHOR
Stefano Spezia, Dec 26 2022
STATUS
approved