Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Feb 01 2024 16:24:09
%S 1,1,1,2,4,12,46,251,1576,11578,94933,875134,8900088,99276703,
%T 1214131109,16107824706,229757728186,3499486564517,56862172844198,
%U 980725126968577,17899265342632635,345197504845310134,7005723403640260805,149261757412790940113,3329108788695272565243
%N Maximal coefficient of x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)).
%C Excluding the term 1 from A326178, the exponents of the product x^0*x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)) are given by all the other terms of A326178.
%C a(n) is the number of compositions of the terms of the n-th row of A359337 into n prime parts less than or equal to prime(n), with the first part equal to 2, the second part less than or equal to 3, ..., and the n-th part less than or equal to prime(n).
%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>
%t Table[Max[CoefficientList[Product[Sum[x^Prime[i],{i,k}],{k,n}],x]],{n,0,24}]
%o (PARI) a(n) = vecmax(Vec(prod(k=1, n, sum(i=1, k, x^prime(i))))); \\ _Michel Marcus_, Dec 27 2022
%o (Python)
%o from collections import Counter
%o from sympy import prime, primerange
%o def A359328(n):
%o if n == 0: return 1
%o c, p = {0:1}, list(primerange(prime(n)+1))
%o for k in range(1,n+1):
%o d = Counter()
%o for j in c:
%o a = c[j]
%o for i in p[:k]:
%o d[j+i] += a
%o c = d
%o return max(c.values()) # _Chai Wah Wu_, Feb 01 2024
%Y Cf. A000040, A326178, A350457.
%Y Cf. A359337 (corresponding exponents), A359338 (minimal corresponding exponent), A359339 (maximal corresponding exponent).
%K nonn
%O 0,4
%A _Stefano Spezia_, Dec 26 2022