

A359337


Irregular triangle read by rows: the nth row gives the exponents of the powers of x corresponding to the maximal coefficient of the product x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)).


3



0, 2, 4, 5, 7, 12, 16, 17, 22, 24, 32, 42, 53, 65, 79, 96, 114, 134, 155, 180, 205, 233, 263, 294, 329, 364, 403, 442, 485, 529, 576, 625, 676, 729, 785, 842, 902, 964, 1029, 1097, 1167, 1238, 1313, 1390, 1469, 1552, 1636, 1723, 1813, 1904, 1999, 2096, 2195, 2298
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Conjecture: except for n = 2, 5, and 6, the rows have length equal to 1.


LINKS



EXAMPLE

The irregular triangle begins:
0;
2;
4, 5;
7;
12;
16, 17;
22, 24;
32;
42;
53;
65;
...


MATHEMATICA

b[n_]:=CoefficientList[Product[Sum[x^Prime[i], {i, k}], {k, n}], x]; Table[Position[b[n], Max[b[n]]]1, {n, 0, 50}]//Flatten


CROSSREFS



KEYWORD

nonn,tabf


AUTHOR



STATUS

approved



