login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359335
Square root of determinant of skew-symmetric 2n X 2n matrix with entries i XOR j for i < j, i=1..2n, j=1..2n.
0
1, 3, 14, 84, 360, 2160, 10080, 60480, 249984, 1499904, 6999552, 41997312, 179988480, 1079930880, 5039677440, 30238064640, 122903101440, 737418608640, 3441286840320, 20647721041920, 88490233036800, 530941398220800, 2477726525030400, 14866359150182400
OFFSET
0,2
FORMULA
It appears that for n > 1, a(n) / a(n-1) = 2 * (4*e(n)-1) / (2*e(n)-1), where e(n) = A006519(n).
MATHEMATICA
a[0] = 1;
a[n_] := Sqrt@Det@Table[Sign[i - j] BitXor[i, j], {i, 2 n}, {j, 2 n}];
Table[a[n], {n, 0, 20}]
PROG
(PARI) a(n) = sqrtint(matdet(matrix(2*n, 2*n, i, j, sign(i-j)*bitxor(i, j)))); \\ Michel Marcus, Dec 28 2022
CROSSREFS
Cf. A006519.
Sequence in context: A121687 A154757 A352307 * A074535 A256337 A256330
KEYWORD
nonn
AUTHOR
Andrey Zabolotskiy, Dec 26 2022
STATUS
approved