login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359325
Number of divisors of 6*n-3 of form 6*k+5.
5
0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 2, 0, 0, 1, 2, 1, 1, 0, 0, 2, 0, 1, 1, 0, 2, 1, 0, 0, 1, 2, 0, 2, 1, 1, 2, 0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 0, 1, 2, 1, 1
OFFSET
1,18
LINKS
FORMULA
a(n) = A319995(6*n-3).
G.f.: Sum_{k>0} x^(3*k)/(1 - x^(6*k-1)).
G.f.: Sum_{k>0} x^(5*k-2)/(1 - x^(6*k-3)).
MATHEMATICA
a[n_] := DivisorSum[6*n-3, 1 &, Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
PROG
(PARI) a(n) = sumdiv(6*n-3, d, d%6==5);
(PARI) my(N=100, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/(1-x^(6*k-1)))))
(PARI) my(N=100, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(5*k-2)/(1-x^(6*k-3)))))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 25 2022
STATUS
approved