OFFSET
1,2
COMMENTS
First differs from A063743 at n = 22.
Numbers k such that gcd(k, A007895(k)) = 1.
The Fibonacci numbers (A000045) are terms. These are also the only Zeckendorf-Niven numbers (A328208) in this sequence.
Includes all the prime numbers.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 7, 61, 614, 6028, 61226, 606367, 6041106, 61235023, 612542436, 6034626175, 60093287082, 609082612171, ... . Conjecture: The asymptotic density of this sequence exists and equals 6/Pi^2 = 0.607927... (A059956), the same as the density of A094387.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
3 is a term since A007895(3) = 1, and gcd(3, 1) = 1.
MATHEMATICA
z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; Select[Range[120], CoprimeQ[#, z[#]] &] (* after Alonso del Arte at A007895 *)
PROG
(PARI) is(n) = if(n<4, 1, my(k=2, m=n, s, t); while(fibonacci(k++)<=m, ); while(k && m, t=fibonacci(k); if(t<=m, m-=t; s++); k--); gcd(n, s)==1); \\ after Charles R Greathouse IV at A007895
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Dec 07 2022
STATUS
approved