OFFSET
1,2
COMMENTS
Numbers k such that gcd(k, A007953(k)) = 1.
Olivier (1975, 1976) proved that the asymptotic density of this sequence is 9/(2*Pi^2) = 0.455945... (A088245).
None of the terms are divisible by 3.
The powers of 10 (A011557) are terms. These are also the only Niven numbers (A005349) in this sequence.
Includes all the prime numbers above 7.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Curtis Cooper and Robert E. Kennedy, On the set of positive integers which are relatively prime to their digital sum and its complement, J. Inst. Math. & Comp. Sci. (Math. Ser.), Vol. 10 (1997), pp. 173-180.
Christian Mauduit, Carl Pomerance, and András Sárközy, On the distribution in residue classes of integers with a fixed sum of digits, The Ramanujan Journal, Vol. 9, No. 1-2 (2005), pp. 45-62; alternative link.
Michel Olivier, Sur la probabilité que n soit premier à la somme de ses chiffres, C. R. Math. Acad. Sci. Paris, Série A, Vol. 280 (1975), pp. 543-545.
Michel Olivier, Fonctions g-additives et formule asymptotique pour la propriété (n, f(n)) = q, Acta Arithmetica, Vol. 31, No. 4 (1976), pp. 361-384; alternative link.
EXAMPLE
10 is a term since A007953(10) = 1 + 0 = 1, and gcd(10, 1) = 1.
MATHEMATICA
Select[Range[200], CoprimeQ[#, Plus @@ IntegerDigits[#]] &]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Nov 22 2020
STATUS
approved