OFFSET
1,2
COMMENTS
Numbers n such that Omega(n)^phi(n) == 1 (mod n), where Omega(n) is the number of prime divisors of n counted with multiplicity (A001222) and phi(n) is the Euler totient function (A000010). - Michel Lagneau, Dec 21 2012
Alladi shows that the density of this sequence is 6/Pi^2, that is, a(n) ~ (Pi^2/6)n. - Charles R Greathouse IV, Aug 03 2016
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..1000
Krishnaswami Alladi, On the probability that n and Omega(n) are relatively prime, Fibonacci Quarterly 19:3 (1981), pp. 228-232.
MATHEMATICA
fQ[n_] := GCD[PrimeOmega[n], n] == 1; Select[Range@115, fQ] (* Robert G. Wilson v, Dec 24 2012 *)
PROG
(PARI) j=[]; for(n=1, 300, if(gcd(n, bigomega(n))==1, j=concat(j, n))); j
(PARI) n=0; for (m=1, 10^9, if (gcd(m, bigomega(m))==1, write("b063743.txt", n++, " ", m); if (n==1000, break))) \\ Harry J. Smith, Aug 29 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Aug 13 2001
STATUS
approved