login
A358979
Least prime p such that p^n + 4 is the product of n distinct primes.
0
3, 19, 11, 29, 131, 631, 983, 353, 9941, 20089, 15031, 8387, 102931
OFFSET
1,1
COMMENTS
Corresponding values of p^n + 4 are 7, 365, 707285, 38579489655, 63121332085847285, 886899938586555644331, 241100240228887100165, ...
If they exist, a(14) > 106123, a(15) > 41257, a(16) > 31567.
EXAMPLE
a(1) = 3; 3^1 + 4 = 7.
a(2) = 19; 19^2 + 4 = 5 * 73.
a(3) = 11; 11^3 + 4 = 3 * 5 * 89.
a(4) = 29; 29^4 + 4 = 5 * 17 * 53 * 157.
MATHEMATICA
Table[b=4; y[a_]:=FactorInteger[Prime[a]^n+b]; k=1; Monitor[Parallelize[While[True, If[And[Length[y[k]]==n, Count[Flatten[y[k]], 1]==n], Break[]]; k++]; k], k]//Prime, {n, 1, 10}]
PROG
(PARI) a(n) = forprime(p=2, , my(f=factor(p^n + 4)); if (issquarefree(f) && (omega(f) == n), return(p)));
CROSSREFS
KEYWORD
nonn,more
AUTHOR
STATUS
approved