The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244605 Numerators of the Akiyama-Tanigawa transform applied to 1/(n+1) with -1/2 instead of 1/2. 1
1, 3, 19, 7, 449, 31, 2647, 127, 7649, 511, 67523, 2047, 11178659, 8191, 98305, 32767, 33419233, 131071, 209233981, 524287, 345855139, 2097151, 579668327, 8388607, 45565432859, 33554431, 411206281, 134217727, 209789384821, 536870911, 23993971665011, 2147483647, -5518887720767 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The autosequence of the second kind A164555(n)/A027642(n) = 1, 1/2, 1/6, 0, -1/30, 0, ... (the second Bernoulli numbers) is the binomial transform of A027641(n)/A027642(n) = 1, -1/2, 1/6, 0, -1/30, 0, ... (the first Bernoulli numbers). Hence the name.
The Akiyama-Tanigawa transform applied to 1, -1/2, 1/3, 1/4, 1/5, 1/6, ... is:
1, -1/2, 1/3, 1/4, 1/5, ...
3/2, -5/3, 1/4, 1/5, 1/6, ...
19/6, -23/6, 3/20, 2/15, 5/42, ...
7, -239/30, 1/20, 2/35, 5/84, ... .
The first column is a(n)/b(n) = 1, 3/2, 19/6, 7, 449/30, 31, 2647/42, 127, 7649/30, 511, 67523/66, 2047, ..., where the denominators are b(n) = A027642(n).
By the formula below, the Bernoulli numbers are linked to the Mersenne numbers A000225 (2^n-1).
LINKS
FORMULA
a(n) = numerator of A164555(n)/A027642(n) + A000225(n).
MATHEMATICA
a[n_] := BernoulliB[n]+2^n-1 // Numerator; a[1] = 3; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jul 25 2014 *)
PROG
(PARI) a(n) = my(b = numerator(bernfrac(n))/denominator(bernfrac(n))); if (n == 1, numerator(- b + 2^n - 1), numerator(b + 2^n - 1)); \\ Michel Marcus, Jul 18 2014
(PARI) {a(n) = if( n<0, 0, 2*(n==1) + numerator( bernfrac(n) + 2^n - 1))}; /* Michael Somos, Aug 05 2014 */
CROSSREFS
Sequence in context: A084559 A272815 A179767 * A213602 A145688 A358979
KEYWORD
sign,frac
AUTHOR
Paul Curtz, Jul 01 2014
EXTENSIONS
a(12)-a(32) from Jean-François Alcover, Jul 01 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 18:11 EDT 2024. Contains 373359 sequences. (Running on oeis4.)