The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179767 a(n) is the smallest prime of the form 4k + 3 such that the first n iterations of the map p -> 4p + 3 are prime with the next iteration being composite. 1
 3, 19, 7, 179, 1447, 32059, 55171, 17231, 32611, 644823367, 8870650619, 10808693851, 26813406071 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This sequence is finite and complete. Proof: Suppose a(9) = p exists. Then, we obtain the sequence of 10 primes:   E = {4p + 3 -> 16p + 15 -> 64p + 63 ->...-> (2^20)p + (2^22 - 1)}. The prime divisors or 2^(2*q) - 1 for q = 1,2,...,11 are     (2^2 - 1) -> {3};     (2^4 - 1) -> {3, 5};     (2^6 - 1) -> {3, 7};     (2^8 - 1) -> {3, 5, 17};     (2^10 - 1) -> {3, 11, 31};     (2^12 - 1) -> {3, 5, 7, 13};     (2^14 - 1) -> {3, 43, 127};     (2^16 - 1) -> {3, 5, 17, 257};     (2^18 - 1) -> {3, 7, 19, 73};     (2^20 - 1) -> {3, 5, 11, 31, 41};     (2^22 - 1) -> {3, 23, 89, 683}. But p == r (mod 32) where r is element of the set {3, 7, 11, 15, 19, 23, 27, 31}, and one of the ten numbers of E is divisible by r. For example, 27 | (2^18)p + 2^18 - 1 if p == 27 (mod 32). Remark: the map p -> 4p + 1 is not interesting because the corresponding sequence contains only two numbers: a(0) = 5 and a(1) = 13 if we consider only 2 iterations {4p + 1 -> 16p + 5 -> 64p + 21}: if p==0 (mod 3) => 64p + 21 is composite, if p==1 (mod 3) => 16p + 5 is composite and if  p==2 (mod 3) => 4p + 1 is composite. From Michael S. Branicky, Mar 19 2021: (Start) Proof of finiteness is incorrect.  Flaw is last sentence: "For example, ...". Specifically, 27 does not divide quantity unless 27 | k where p = 32*k + 27. No further terms < 10^11. (End) LINKS EXAMPLE a(0) = 3 because 4*3 + 3 = 15 is composite => 0 iteration; a(1) = 19 because 4*19 + 3 = 79 is prime => 1 iteration; a(2) = 7 -> 31 -> 127 are primes => 2 iterations; a(3) = 179 -> 719 -> 2879 -> 11519 are primes => 3 iterations; a(8) = 32611 -> 130447 -> 521791 -> 2087167 -> 8348671 -> 33394687 -> 133578751 -> 534315007 -> 2137260031 are primes => 8 iterations. MAPLE with(numtheory):for m from 0 to 8 do: ii:=0:for i from 1 to 50000 do : n:=ithprime(i):if   irem(n, 4) = 3 then nn:=n: id:=0:k:=0:for it from 1 to 8 do: p:=4*nn+3: if type   (p, prime)=true and id=0 then k:=k+1:nn:=p:else id:=1:fi:od:if k=m and ii=0 then   ii:=1:print(n):else fi:else fi:od:od: PROG (Python) from sympy import isprime def iters(p):   c = 0   while isprime(4*p + 3): p, c = 4*p + 3, c + 1   return c def a(n):   k = 0   while True:     p, k = 4*k + 3, k + 1     if isprime(p) and iters(p) == n: return p print([a(n) for n in range(9)]) # Michael S. Branicky, Mar 19 2021 CROSSREFS Sequence in context: A114365 A084559 A272815 * A244605 A213602 A145688 Adjacent sequences:  A179764 A179765 A179766 * A179768 A179769 A179770 KEYWORD nonn,more,hard AUTHOR Michel Lagneau, Jan 10 2011 EXTENSIONS a(9)-a(12) from Michael S. Branicky, Mar 19 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 10:44 EDT 2021. Contains 343821 sequences. (Running on oeis4.)