OFFSET
0,1
COMMENTS
a(n) has the form 5^n * k + x, for some k >= 0, where x is a solution to the equation x^2 + 4 == 0 (mod 5^n). - Daniel Suteu, Jan 04 2023
LINKS
Daniel Suteu, Table of n, a(n) for n = 0..500
EXAMPLE
a(2) = 11 because 11^2+4 = 125 = 5*5^2, 11 and 5 are prime, and no smaller prime works.
a(3) = 239 because 239^2+4 = 57125 = 457*5^3, 239 and 457 are prime, and no smaller prime works.
MAPLE
V:= Array(0..11): count:= 0: p:= 1:
while count < 12 do
p:= nextprime(p);
v:= p^2+4;
w:= padic:-ordp(v, 5);
if v = 5^w and V[w-1] = 0 then V[w-1]:= p; count:= count+1 fi;
if w <= 11 and V[w] = 0 and isprime(v/5^w) then
V[w]:= p; count:= count+1
fi;
od:
convert(V, list);
MATHEMATICA
a[n_] := Module[{p=2, m=5^n}, While[!PrimeQ[Sqrt[p*m - 4]], p = NextPrime[p]]; Sqrt[p*m - 4]]; Array[a, 8, 0] (* Amiram Eldar, Sep 28 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Sep 28 2022
EXTENSIONS
a(12)-a(20) from Giorgos Kalogeropoulos, Sep 28 2022
a(21)-a(22) from Daniel Suteu, Jan 04 2023
STATUS
approved