The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A357426 Primes p such that p^2+4 is a prime times 5^k for some k >= 1. 2
11, 19, 31, 41, 61, 71, 79, 89, 109, 131, 139, 149, 151, 181, 191, 239, 241, 251, 379, 389, 409, 421, 461, 499, 509, 541, 599, 631, 659, 661, 709, 719, 769, 811, 919, 1009, 1019, 1021, 1031, 1109, 1129, 1151, 1201, 1231, 1291, 1361, 1399, 1409, 1451, 1489, 1549, 1601, 1621, 1721, 1789, 1871, 1889, 1931, 2011, 2039, 2069, 2131, 2179, 2221, 2251, 2309, 2341, 2351 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
All terms == 1 or 9 (mod 10).
LINKS
EXAMPLE
a(4) = 41 is a term because 41 is prime and 41^2+4 = 1685 = 337 * 5^1 where 337 is prime.
MAPLE
filter:= proc(p) local v;
if not isprime(p) then return false fi;
v:= p^2+4;
isprime(v/5^padic:-ordp(v, 5))
end proc:
filter(11):= true:
select(filter, [seq(seq(10*i+j, j= [1, 9]), i=1..1000)]);
MATHEMATICA
q[p_] := (e = IntegerExponent[m = p^2 + 4, 5]) > 0 && (m==5^e || PrimeQ[m/5^e]); Select[Prime[Range[350]], q] (* Amiram Eldar, Sep 28 2022 *)
CROSSREFS
Disjoint from A062324.
Sequence in context: A322548 A049719 A155555 * A152091 A272550 A122869
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Sep 27 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 02:13 EDT 2024. Contains 372957 sequences. (Running on oeis4.)