The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A357426 Primes p such that p^2+4 is a prime times 5^k for some k >= 1. 2
 11, 19, 31, 41, 61, 71, 79, 89, 109, 131, 139, 149, 151, 181, 191, 239, 241, 251, 379, 389, 409, 421, 461, 499, 509, 541, 599, 631, 659, 661, 709, 719, 769, 811, 919, 1009, 1019, 1021, 1031, 1109, 1129, 1151, 1201, 1231, 1291, 1361, 1399, 1409, 1451, 1489, 1549, 1601, 1621, 1721, 1789, 1871, 1889, 1931, 2011, 2039, 2069, 2131, 2179, 2221, 2251, 2309, 2341, 2351 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All terms == 1 or 9 (mod 10). LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE a(4) = 41 is a term because 41 is prime and 41^2+4 = 1685 = 337 * 5^1 where 337 is prime. MAPLE filter:= proc(p) local v; if not isprime(p) then return false fi; v:= p^2+4; isprime(v/5^padic:-ordp(v, 5)) end proc: filter(11):= true: select(filter, [seq(seq(10*i+j, j= [1, 9]), i=1..1000)]); MATHEMATICA q[p_] := (e = IntegerExponent[m = p^2 + 4, 5]) > 0 && (m==5^e || PrimeQ[m/5^e]); Select[Prime[Range[350]], q] (* Amiram Eldar, Sep 28 2022 *) CROSSREFS Disjoint from A062324. Sequence in context: A322548 A049719 A155555 * A152091 A272550 A122869 Adjacent sequences: A357423 A357424 A357425 * A357427 A357428 A357429 KEYWORD nonn AUTHOR J. M. Bergot and Robert Israel, Sep 27 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 02:13 EDT 2024. Contains 372957 sequences. (Running on oeis4.)