OFFSET
1,2
COMMENTS
Positions of first appearances in A342507.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
EXAMPLE
The terms together with their corresponding rooted trees begin:
1: o
2: (o)
3: ((o))
5: (((o)))
11: ((((o))))
25: (((o))((o)))
55: (((o))(((o))))
121: ((((o)))(((o))))
275: (((o))((o))(((o))))
605: (((o))(((o)))(((o))))
1331: ((((o)))(((o)))(((o))))
3025: (((o))((o))(((o)))(((o))))
6655: (((o))(((o)))(((o)))(((o))))
14641: ((((o)))(((o)))(((o)))(((o))))
33275: (((o))((o))(((o)))(((o)))(((o))))
73205: (((o))(((o)))(((o)))(((o)))(((o))))
MATHEMATICA
MGTree[n_]:=If[n==1, {}, MGTree/@Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
seq=Table[Count[MGTree[n], _[__], {0, Infinity}], {n, 1000}];
Table[Position[seq, n][[1, 1]], {n, Union[seq]}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 27 2022
STATUS
approved