login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000628 Number of n-node unrooted steric quartic trees; number of n-carbon alkanes C(n)H(2n+2) taking stereoisomers into account.
(Formerly M0732 N0274)
15
1, 1, 1, 1, 2, 3, 5, 11, 24, 55, 136, 345, 900, 2412, 6563, 18127, 50699, 143255, 408429, 1173770, 3396844, 9892302, 28972080, 85289390, 252260276, 749329719, 2234695030, 6688893605, 20089296554, 60526543480, 182896187256, 554188210352, 1683557607211, 5126819371356, 15647855317080, 47862049187447, 146691564302648, 450451875783866, 1385724615285949 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Trees are unrooted; nodes are unlabeled and have degree <= 4.

Regarding stereoisomers as different means that only the alternating group A_4 acts at each node, not the full symmetric group S_4. See A000602 for the analogous sequence when stereoisomers are not counted as different.

Has also been described as steric planted trees (paraffins) with n nodes.

REFERENCES

F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.

R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, 1989, pp. 278-281.

J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..38.

C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric paraffin hydrocarbons, J. Amer. Chem. Soc., 54 (1932), 1538-1545.

C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric paraffin hydrocarbons, J. Amer. Chem. Soc., 54 (4) (1932), 1538-1545. (Annotated scanned copy)

L. Bytautats and D. J. Klein, Alkane Isomere Combinatorics: Stereostructure enumeration and graph-invariant and molecylar-property distributions, J. Chem. Inf. Comput. Sci 39 (1999) 803-818, Table 1.

P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992.

P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)

R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [Annotated scanned copy] See p. 44.

R. W. Robinson, F. Harary and A. T. Balaban, The numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (1976), 355-361.

R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)

Index entries for sequences related to rooted trees

Index entries for sequences related to trees

FORMULA

Blair and Henze give recurrence (see the Maple code).

For even n a(n) = A086194(n) + A086200(n/2), for odd n a(n) = A086194(n).

MAPLE

s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 0 to 60 do s[n+1/4]:=0 od:for n from 0 to 60 do s[n+1/2]:=0 od:for n from 0 to 60 do s[n+3/4]:=0 od:s[ -1]:=0:for n from 1 to 50 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k], k=0..n-j), j=1..n))/n od:for n from 0 to 50 do q[n]:=sum(s[i]*s[n-i], i=0..n) od:for n from 0 to 50 do q[n-1/2]:=0 od:for n from 0 to 40 do f:=n->(3*s[n]+2*s[n/2]+q[(n-1)/2]-q[n]+2*sum(s[j]*s[n-3*j-1], j=0..n/3))/4 od:seq(f(n), n=0..38); # the formulas for s[n+1] and f(n) are from eq.(4) and (12), respectively, of the Robinson et al. paper; s[n]=A000625(n), f(n)=A000628(n); q[n] is the convolution of s[n] with itself; # Emeric Deutsch

MATHEMATICA

max = 40; s[0] = s[1] = 1; s[_] = 0; For[n=1, n <= max, n++, s[n+1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n-j-k], {k, 0, n-j}], {j, 1, n}])/n]; For[n=0, n <= max, n++, q[n] = Sum[s[i]*s[n-i], {i, 0, n}]]; For[n=0, n <= max, n++, q[n-1/2]=0]; f[n_] := (3*s[n] + 2*s[n/2] + q[(n-1)/2] - q[n] + 2*Sum[s[j]*s[n-3*j-1], {j, 0, n/3}])/4; Table[f[n], {n, 0, max}] (* Jean-François Alcover, Dec 29 2014, after Emeric Deutsch *)

CROSSREFS

Equals A000626 + A000627.

Cf. A000598, A000602, A000625, A010372, A010373, A086194, A086200.

Sequence in context: A175234 A060696 A076051 * A273755 A258804 A006888

Adjacent sequences:  A000625 A000626 A000627 * A000629 A000630 A000631

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003

More terms from Emeric Deutsch, May 16 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 11:48 EST 2021. Contains 349563 sequences. (Running on oeis4.)