login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358311
Lucas numbers that are not the sum of two squares.
1
3, 7, 11, 47, 76, 123, 199, 322, 843, 1364, 2207, 3571, 5778, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 4870847, 7881196, 12752043, 20633239, 33385282, 87403803, 141422324, 228826127, 370248451, 599074578, 1568397607, 2537720636
OFFSET
1,1
COMMENTS
Lucas numbers with indices 2, 4, 5 mod 6 are 3 mod 4, so these are all terms. - Charles R Greathouse IV, Jan 11 2023
LINKS
FORMULA
phi^n < a(n) < phi^(2n) for n > 4. - Charles R Greathouse IV, Jan 11 2023
MAPLE
R:= NULL: count:= 0:
a:= 2: b:= 1:
for i from 1 while count < 100 do
a, b:= b, a+b;
if ormap(t -> t[2]::odd and t[1] mod 4 = 3, ifactors(b)[2]) then
R:= R, b; count:= count+1
fi
od:
R; # Robert Israel, Jan 10 2023
PROG
(Python)
from sympy import factorint
from itertools import islice
def A358311_gen(): # generator of terms
a, b = 2, 1
while True:
if any(e&1 and p&3==3 for p, e in factorint(a).items()):
yield a
a, b = b, a+b
A358311_list = list(islice(A358311_gen(), 40))
CROSSREFS
Intersection of A000032 and A022544.
Cf. A356809.
Sequence in context: A139599 A141161 A333421 * A217383 A005372 A125220
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Jan 10 2023
STATUS
approved