Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jan 26 2024 13:53:36
%S 3,7,11,47,76,123,199,322,843,1364,2207,3571,5778,15127,24476,39603,
%T 64079,103682,167761,271443,439204,710647,1149851,4870847,7881196,
%U 12752043,20633239,33385282,87403803,141422324,228826127,370248451,599074578,1568397607,2537720636
%N Lucas numbers that are not the sum of two squares.
%C Lucas numbers with indices 2, 4, 5 mod 6 are 3 mod 4, so these are all terms. - _Charles R Greathouse IV_, Jan 11 2023
%H Chai Wah Wu, <a href="/A358311/b358311.txt">Table of n, a(n) for n = 1..958</a>
%F phi^n < a(n) < phi^(2n) for n > 4. - _Charles R Greathouse IV_, Jan 11 2023
%p R:= NULL: count:= 0:
%p a:= 2: b:= 1:
%p for i from 1 while count < 100 do
%p a, b:= b,a+b;
%p if ormap(t -> t[2]::odd and t[1] mod 4 = 3, ifactors(b)[2]) then
%p R:= R, b; count:= count+1
%p fi
%p od:
%p R; # _Robert Israel_, Jan 10 2023
%o (Python)
%o from sympy import factorint
%o from itertools import islice
%o def A358311_gen(): # generator of terms
%o a, b = 2,1
%o while True:
%o if any(e&1 and p&3==3 for p, e in factorint(a).items()):
%o yield a
%o a, b = b, a+b
%o A358311_list = list(islice(A358311_gen(),40))
%Y Intersection of A000032 and A022544.
%Y Cf. A356809.
%K nonn
%O 1,1
%A _Chai Wah Wu_, Jan 10 2023