login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358312
Consider the graph of symmetric primes where p and q are connected if |p-q| = gcd(p-1,q-1). This sequence is an irregular table where the n-th row lists the first symmetric prime in a connected component with n vertices, with one representative for each nonisomorphic graph. Within a row, graphs are ordered by increasing size of its initial prime.
0
3343, 42293, 461393, 70793, 72053, 268267, 8917219
OFFSET
2,1
COMMENTS
Row lengths are A001349(n); if the sequence is finite the last row may be shorter.
Kalmynin gives T(2, 1) = 3343 and proves that, under a conjecture which is intermediate between Dickson's conjecture and the Bateman-Horn-Stemmler conjecture, that this sequence is infinite.
LINKS
A. B. Kalmynin, On the Symmetry Graph of Prime Numbers, INTEGERS 21 (2021), #A2.
EXAMPLE
T(2, 1) = 3343 has components {3343, 4457} which form the complete graph K_2.
T(3, 1) = 42293 has components {42293, 42487, 63439} which form the path graph P_3.
T(3, 2) = 461393 has components {461393, 519067, 692089} which form the complete graph K_3.
T(4, 1) = 70793 has components {70793, 106187, 106189, 123887} which form the claw graph.
T(4, 2) = 72053 has components {72053, 108079, 216157, 288209} which form the path graph P_4.
T(4, 3) = 268267 has components {268267, 357689, 536531, 536533} which form the paw graph.
T(4, 4) = 8917219 has components {8917219, 9908021, 14862031, 17834437} which form the square graph.
CROSSREFS
Cf. A090190.
Sequence in context: A252188 A270338 A054356 * A348525 A255731 A204884
KEYWORD
nonn,tabf,hard,more
AUTHOR
STATUS
approved