OFFSET
0,8
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
EXAMPLE
Triangle begins:
1
0 1
1 0 1
0 2 0 1
3 0 3 0 1
0 6 0 4 0 1
10 0 10 0 5 0 1
0 20 0 15 0 6 0 1
35 0 35 0 21 0 7 0 1
0 70 0 56 0 28 0 8 0 1
126 0 126 0 84 0 36 0 9 0 1
0 252 0 210 0 120 0 45 0 10 0 1
462 0 462 0 330 0 165 0 55 0 11 0 1
0 924 0 792 0 495 0 220 0 66 0 12 0 1
For example, row n = 5 counts the following compositions:
. (32) . (41) . (5)
(122) (113)
(221) (212)
(1121) (311)
(2111)
(11111)
MATHEMATICA
Prepend[Table[If[EvenQ[nn], Prepend[#, 0], #]&[Riffle[Table[Binomial[nn, k], {k, Floor[nn/2], nn}], 0]], {nn, 0, 10}], {1}]
CROSSREFS
The full triangle counting compositions by alternating sum is A097805.
This is the right-half of even-indexed rows of A260492.
The triangle without top row and left column is A108044.
Ranking and counting compositions:
A011782 counts compositions.
A124754 gives alternating sums of standard compositions.
A238279 counts compositions by sum and number of maximal runs.
KEYWORD
AUTHOR
Gus Wiseman, Sep 30 2022
STATUS
approved