OFFSET
1,4
COMMENTS
Conjecture: all odd Catalan numbers have smallest prime factor 3, except Catalan(3), which has smallest prime factor 5, and Catalan(31) and Catalan(255), which have smallest prime factor 7 (checked up to Catalan(-1 + 2^2048)).
FORMULA
EXAMPLE
a(5)=0 because 2^5 -1 = 31 and Catalan(31) = 7*11*17*19*37*41*43*47*53*59*61 so the power of 3 is zero.
MATHEMATICA
pow3[ nfac_ ] := (nfac - Plus @@ IntegerDigits[ nfac, 3 ])/(3-1); powcat3[ n_ ] := pow3[ 2n ]-pow3[ n+1 ]-pow3[ n ]; Table[ powcat3[ 2^n-1 ], {n, 2048} ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Mar 28 2001
STATUS
approved