login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263730 Irregular triangle read by rows in which row n > 1 lists k such that (k^2 + k*n)/(k + 1) is an integer. 5
0, 0, 1, 0, 2, 0, 1, 3, 0, 4, 0, 1, 2, 5, 0, 6, 0, 1, 3, 7, 0, 2, 8, 0, 1, 4, 9, 0, 10, 0, 1, 2, 3, 5, 11, 0, 12, 0, 1, 6, 13, 0, 2, 4, 14, 0, 1, 3, 7, 15, 0, 16, 0, 1, 2, 5, 8, 17, 0, 18, 0, 1, 3, 4, 9, 19, 0, 2, 6, 20, 0, 1, 10, 21, 0, 22, 0, 1, 2, 3, 5, 7, 11, 23, 0, 4, 24, 0, 1, 12, 25 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,5

COMMENTS

Minimal value of k is 0 and maximal value of k is n - 2 for n-th row.

Length of rows gives A000005.

Sum of rows gives A065608.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 2..1000

FORMULA

a(n) = A027750(n) - 1.

EXAMPLE

  n\k| 0   1   2   3   4   5   6   7   8   9  10

  ---+------------------------------------------

   0 | 0

   1 | 0   1   2   3   4   5   6   7   8   9  10

   2 | 0

   3 | 0   1

   4 | 0   2

   5 | 0   1   3

   6 | 0   4

   7 | 0   1   2   5

   8 | 0   6

   9 | 0   1   3   7

  10 | 0   2   8

  11 | 0   1   4   9

  12 | 0  10

  13 | 0   1   2   3   5  11

MATHEMATICA

Table[Select[Range[0, n-2], Divisible[#^2+n #, #+1]&], {n, 30}]//Flatten (* Harvey P. Dale, Dec 27 2016 *)

PROG

(PARI) tabf(nn) = {for (n=2, nn, for (k=0, n, if (!((k^2 + k*n) % (k+1)), print1(k, ", ")); ); print(); ); } \\ Michel Marcus, Oct 25 2015

CROSSREFS

Cf. A000005, A065608, A027750, A263729.

Sequence in context: A296046 A060318 A246061 * A089994 A178107 A272472

Adjacent sequences:  A263727 A263728 A263729 * A263731 A263732 A263733

KEYWORD

nonn,tabf

AUTHOR

Juri-Stepan Gerasimov, Oct 25 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 08:27 EDT 2018. Contains 316405 sequences. (Running on oeis4.)