login
Irregular triangle read by rows in which row n > 1 lists k such that (k^2 + k*n)/(k + 1) is an integer.
5

%I #23 Dec 27 2016 19:09:35

%S 0,0,1,0,2,0,1,3,0,4,0,1,2,5,0,6,0,1,3,7,0,2,8,0,1,4,9,0,10,0,1,2,3,5,

%T 11,0,12,0,1,6,13,0,2,4,14,0,1,3,7,15,0,16,0,1,2,5,8,17,0,18,0,1,3,4,

%U 9,19,0,2,6,20,0,1,10,21,0,22,0,1,2,3,5,7,11,23,0,4,24,0,1,12,25

%N Irregular triangle read by rows in which row n > 1 lists k such that (k^2 + k*n)/(k + 1) is an integer.

%C Minimal value of k is 0 and maximal value of k is n - 2 for n-th row.

%C Length of rows gives A000005.

%C Sum of rows gives A065608.

%H Harvey P. Dale, <a href="/A263730/b263730.txt">Table of n, a(n) for n = 2..1000</a>

%F a(n) = A027750(n) - 1.

%e n\k| 0 1 2 3 4 5 6 7 8 9 10

%e ---+------------------------------------------

%e 0 | 0

%e 1 | 0 1 2 3 4 5 6 7 8 9 10

%e 2 | 0

%e 3 | 0 1

%e 4 | 0 2

%e 5 | 0 1 3

%e 6 | 0 4

%e 7 | 0 1 2 5

%e 8 | 0 6

%e 9 | 0 1 3 7

%e 10 | 0 2 8

%e 11 | 0 1 4 9

%e 12 | 0 10

%e 13 | 0 1 2 3 5 11

%t Table[Select[Range[0,n-2],Divisible[#^2+n #,#+1]&],{n,30}]//Flatten (* _Harvey P. Dale_, Dec 27 2016 *)

%o (PARI) tabf(nn) = {for (n=2, nn, for (k=0, n, if (!((k^2 + k*n) % (k+1)), print1(k, ", "));); print(););} \\ _Michel Marcus_, Oct 25 2015

%Y Cf. A000005, A065608, A027750, A263729.

%K nonn,tabf

%O 2,5

%A _Juri-Stepan Gerasimov_, Oct 25 2015