login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356545
Triangle read by rows. T(n, k) are the coefficients of polynomials p_n(x) based on the Eulerian numbers of first order representing the Bernoulli numbers as B_n = p_n(1) / (n + 1)!.
3
1, 1, 0, 2, -1, 0, 6, -8, 2, 0, 24, -66, 44, -6, 0, 120, -624, 792, -312, 24, 0, 720, -6840, 14496, -10872, 2736, -120, 0, 5040, -86400, 285840, -347904, 171504, -28800, 720, 0, 40320, -1244880, 6181920, -11245680, 8996544, -3090960, 355680, -5040, 0
OFFSET
0,4
COMMENTS
The Bernoulli numbers with B(1) = 1/2 can be represented as the weighted sum of Eulerian numbers, where we use the definition as given by Graham et al., Eulerian(n, k) = A173018(n, k). For n >= 0 we have
B_(n) = (1/(n + 1)) * Sum_{k=0..n} (-1)^k * Eulerian(n, k) / binomial(n, k).
The formula was given by Worpitsky in 1883 (see link) as an example for the application of a formula of Schlömilch from 1856. In 2019 the identity was proved in the modern fashion by Gessel on MathOverflow.
For a variant of this identity see the first formula in A356546.
An analogous representation based on the Eulerian numbers of second order is given in A356547.
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 268. (Since the thirty-fourth printing, Jan. 2022, with B(1) = 1/2.)
LINKS
Ira Gessel, Eulerian number identity, MathOverflow, Apr 2019.
Peter Luschny, Eulerian polynomials.
Oskar Schlömilch, Ueber die Bernoulli'sche Funktion und deren Gebrauch bei der Entwickelung halbconvergenter Reihen, Zeitschrift fuer Mathematik und Pysik, vol. 1 (1856), p. 193-211.
Julius Worpitsky, Studien über die Bernoullischen und Eulerschen Zahlen, Journal für die reine und angewandte Mathematik (Crelle), 94 (1883), 203-232. See page 22, first formula.
FORMULA
Let p_n(x) = Sum_{k=0..n} Eulerian(n, k)*k!*(n - k)! * (-x)^k. For x = 1 these polynomials give rise to the representation Bernoulli(n) = p_n(1) / (n + 1)!.
T(n, k) = [x^k] p_n(x).
T(n, k) = (-1)^k*Eulerian(n, k)*k!*(n - k)!.
T(n, k) = k! * (n-k)! * Sum_{j=0..k} (-1)^(k-j)*(k-j+1)^n*binomial(n+1, j).
T(n, k) = (-1)^k * A173018(n, k) * A098361(n, k).
T(n, k) = (-1)^k * A123125(n, n - k) * A098361(n, n - k).
EXAMPLE
The table T(n, k) of the coefficients, sorted in ascending order, starts:
[0] 1;
[1] 1, 0;
[2] 2, -1, 0;
[3] 6, -8, 2, 0;
[4] 24, -66, 44, -6, 0;
[5] 120, -624, 792, -312, 24, 0;
[6] 720, -6840, 14496, -10872, 2736, -120, 0;
[7] 5040, -86400, 285840, -347904, 171504, -28800, 720, 0;
[8] 40320, -1244880, 6181920, -11245680, 8996544, -3090960, 355680, -5040, 0;
MAPLE
E1 := proc(n, k) combinat:-eulerian1(n, k) end:
p := (n, x) -> add(E1(n, k)*k!*(n - k)!*(-x)^k, k = 0..n):
seq(print(seq(coeff(p(n, x), x, k), k=0..n)), n = 0..8);
seq(p(n, 1)/(n + 1)!, n = 0..14); # check the Bernoulli representation
MATHEMATICA
T[n_, k_] := k! * (n-k)! * Sum[(-1)^(k-j) * (k-j+1)^n * Binomial[n+1, j], {j, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // TableForm
(* Diagonals: *)
d[n_, k_] := k! * (n - k)! * Sum[(-1)^(n-k-j)*(n - j - k + 1)^n * Binomial[n + 1, j], {j, 0, n - k}];
CROSSREFS
Cf. A173018 (Eulerian number), A164555(n)/A027642(n) (Bernoulli numbers with B(1) = 1/2), A129814 (row sums, but different sign for n = 1).
Sequence in context: A281662 A163936 A288874 * A375835 A187555 A358188
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Aug 11 2022
STATUS
approved