login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187555
Triangle read by rows, defined by T(n,k)=binomial(n,k)*|Stirling1(n,k)|, 0<=k<=n.
2
1, 0, 1, 0, 2, 1, 0, 6, 9, 1, 0, 24, 66, 24, 1, 0, 120, 500, 350, 50, 1, 0, 720, 4110, 4500, 1275, 90, 1, 0, 5040, 37044, 56840, 25725, 3675, 147, 1, 0, 40320, 365904, 735392, 473830, 109760, 9016, 224, 1, 0, 362880, 3945024, 9922416, 8477784, 2828574, 381024, 19656, 324, 1, 0, 3628800, 46195920, 140724000, 151972800, 67869900, 13287330, 1134000, 39150, 450, 1
OFFSET
0,5
LINKS
FORMULA
a(n,k) = binomial(n,k)*A132393(n,k).
EXAMPLE
Triangle begins:
1
0,1
0,2,1
0,6,9,1
0,24,66,24,1
0,120,500,350,50,1
0,720,4110,4500,1275,90,1
0,5040,37044,56840,25725,3675,147,1
0,40320,365904,735392,473830,109760,9016,224,1
MAPLE
seq(seq(binomial(n, k)*abs(combinat[stirling1](n, k)), k=0..n), n=0..8);
MATHEMATICA
Flatten[Table[
Table[Binomial[n, k] Abs[StirlingS1[n, k]], {k, 0, n}], {n, 0, 10}], 1]
PROG
(Maxima) create_list(binomial(n, k)*abs(stirling1(n, k)), n, 0, 10, k, 0, n);
CROSSREFS
Row sum sequence is A211210.
Sequence in context: A288874 A356545 A375835 * A358188 A117651 A373426
KEYWORD
nonn,easy,tabl
AUTHOR
Emanuele Munarini, Mar 11 2011
EXTENSIONS
Edited by Olivier Gérard, Oct 23 2012
STATUS
approved