login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187552
Triangle a(n,k) = binomial(n,k)*binomial(n+1,k+1)*binomial(n+2,k+2) read by rows.
1
1, 6, 1, 18, 24, 1, 40, 180, 60, 1, 75, 800, 900, 120, 1, 126, 2625, 7000, 3150, 210, 1, 196, 7056, 36750, 39200, 8820, 336, 1, 288, 16464, 148176, 308700, 164640, 21168, 504, 1, 405, 34560, 493920, 1778112, 1852200, 564480, 45360, 720, 1, 550, 66825, 1425600, 8149680, 14669424, 8731800, 1663200, 89100, 990, 1, 726, 121000, 3675375, 31363200, 89646480, 92207808, 34303500, 4356000, 163350, 1320, 1
OFFSET
0,2
COMMENTS
Row sums are 1, 7, 43, 281, 1896, 13112, 92359,...
EXAMPLE
Triangle begins:
1
6,1
18,24,1
40,180,60,1
75,800,900,120,1
126,2625,7000,3150,210,1
196,7056,36750,39200,8820,336,1
288,16464,148176,308700,164640,21168,504,1
405,34560,493920,1778112,1852200,564480,45360,720,1
MAPLE
A187552 := proc(n, k) binomial(n, k)*binomial(n+1, k+1)*binomial(n+2, k+2) ; end proc:
MATHEMATICA
Table[Binomial[n, k]Binomial[n + 1, k + 1]Binomial[n + 2, k + 2], {n, 0, 8}, {k, 0, 8}]//MatrixForm
PROG
(Maxima) create_list(binomial(n, k)*binomial(n+1, k+1)*binomial(n+2, k+2), n, 0, 8, k, 0, n);
CROSSREFS
Cf. A103371, A002411 (column k=0), A165187 (column k=1), A007531 (subdiagonal)
Sequence in context: A369904 A373573 A092371 * A157386 A157396 A019430
KEYWORD
nonn,easy,tabl
AUTHOR
Emanuele Munarini, Mar 11 2011
STATUS
approved