OFFSET
1,1
COMMENTS
The two real and two complex roots X of x^4 - 2*x^3 - 1 are the negative of the roots of x^4 + 2*x^3 - 1 (see A358187 for the formulas), and X = Y + 1/2, where Y are the roots of y^4 - (3/2)*y^2 - y - 19/16.
FORMULA
r = (1/2)*((4*u + 3 + sqrt(9 - 16*u^2 + 4*sqrt(8*u + 6)))/sqrt(8*u + 6) + 1), with u = (((3/4)*(-9 + sqrt(129)))^(1/3) + w1*((3/4)*(-9 - sqrt(129)))^(1/3) - 3/4)/3 = -0.06738537990..., where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) is one of the complex roots of x^3 - 1. Or with hyperbolic functions u = -(2/3)*sqrt(3)*sinh((1/3)*arcsinh((3/4)*sqrt(3))) - 1/4.
EXAMPLE
2.10691934037621721709710612953797304662927654409281493836735466441422427...
MATHEMATICA
RealDigits[x /. FindRoot[x^4 - 2*x^3 - 1, {x, 2}, WorkingPrecision -> 120], 10, 120][[1]] (* Amiram Eldar, Dec 07 2022 *)
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Dec 06 2022
STATUS
approved